{"title":"Simplified Heat Transfer Model for Spiral-Coil Energy Pile Groups and the Pile–Pile Thermal Interference","authors":"Wang Dai, Shi Gang, Wang Song, Cai Hanshen","doi":"10.1002/ese3.2061","DOIUrl":null,"url":null,"abstract":"<p>The spiral heat exchanger of the energy pile groups is divided into multiple segments. Each heat exchanger segment is regarded as a three-dimensional spiral heat source of finite length. Based on the segmental superposition method of time and space, a variable heat flow segmental superposition heat transfer model of spiral buried-pipe energy pile groups considering the heat transfer between circulating water and energy pile is derived and established. The correctness of the simplified heat transfer model in this paper is verified by comparing its results with those of a COMSOL finite element model. Additionally, a simplified heat transfer model is used to study the thermal interference of energy pile groups. The results show that with the increase in working time, the thermal interference between energy pile groups increases gradually. The pile spacing <i>s</i> and pile diameter <i>d</i> have a significant effect on the thermal interference between energy pile groups: the smaller the pile spacing and pile diameter, the stronger is the thermal interference between energy pile groups. The pile length has a negligible effect on the thermal interference between energy pile groups. The larger the number of energy pile groups, the stronger is the thermal interference between energy pile groups. The thermal interference of an energy pile is related to its position in the pile groups. The thermal interference of the central pile is the largest. This is followed by the edge pile and then the corner pile. Considering the thermal shielding effect of energy piles, only the influence of adjacent piles should be considered when analyzing the thermal interference of energy piles. In addition, the pitch of the spiral heat exchanger and the flow rate of the circulating water have negligible effects on the thermal interference between energy piles. The operation mode of energy pile groups has a significant effect on the thermal interference between energy piles. The thermal interference of energy pile groups in the intermittent operation mode is stronger than that in the continuous operation mode. The shorter the intermittent time, the more intense is the thermal interference of energy piles. These factors should be considered in engineering design.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1205-1222"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2061","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2061","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The spiral heat exchanger of the energy pile groups is divided into multiple segments. Each heat exchanger segment is regarded as a three-dimensional spiral heat source of finite length. Based on the segmental superposition method of time and space, a variable heat flow segmental superposition heat transfer model of spiral buried-pipe energy pile groups considering the heat transfer between circulating water and energy pile is derived and established. The correctness of the simplified heat transfer model in this paper is verified by comparing its results with those of a COMSOL finite element model. Additionally, a simplified heat transfer model is used to study the thermal interference of energy pile groups. The results show that with the increase in working time, the thermal interference between energy pile groups increases gradually. The pile spacing s and pile diameter d have a significant effect on the thermal interference between energy pile groups: the smaller the pile spacing and pile diameter, the stronger is the thermal interference between energy pile groups. The pile length has a negligible effect on the thermal interference between energy pile groups. The larger the number of energy pile groups, the stronger is the thermal interference between energy pile groups. The thermal interference of an energy pile is related to its position in the pile groups. The thermal interference of the central pile is the largest. This is followed by the edge pile and then the corner pile. Considering the thermal shielding effect of energy piles, only the influence of adjacent piles should be considered when analyzing the thermal interference of energy piles. In addition, the pitch of the spiral heat exchanger and the flow rate of the circulating water have negligible effects on the thermal interference between energy piles. The operation mode of energy pile groups has a significant effect on the thermal interference between energy piles. The thermal interference of energy pile groups in the intermittent operation mode is stronger than that in the continuous operation mode. The shorter the intermittent time, the more intense is the thermal interference of energy piles. These factors should be considered in engineering design.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.