Pavlo Herasymenko, Sergii Usenko, Bogdan Yarmolenko, Viktor Gurin
{"title":"Control Strategy for Modular-Structured Series-Resonant Converters: Unifying Pulse-Density Modulation and Phase-Shift Control","authors":"Pavlo Herasymenko, Sergii Usenko, Bogdan Yarmolenko, Viktor Gurin","doi":"10.1049/pel2.70020","DOIUrl":null,"url":null,"abstract":"<p>The study proposes an advanced control technique for modular-structured series-resonant converters, unifying pulse-density modulation (PDM) and phase-shift control to mitigate output current amplitude fluctuations. Series-resonant converters, widely utilised for their efficiency in various applications, typically employ PDM to achieve zero-voltage and quasi-zero-current switching, minimising switching losses. However, these converters often encounter challenges with amplitude fluctuations in the output current, particularly during deep current regulation, which can compromise performance and lead to increased electromagnetic interference and overvoltage issues. The presented control strategy combines PDM with phase-shift control, significantly reducing these fluctuations and maintaining higher minimum peak currents. This unified approach ensures greater stability and efficiency in the converter's operation. Detailed experimental validation confirms the theoretical benefits, highlighting the proposed method's superiority over traditional PDM control techniques in achieving stable and efficient converter performance.</p>","PeriodicalId":56302,"journal":{"name":"IET Power Electronics","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.70020","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.70020","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The study proposes an advanced control technique for modular-structured series-resonant converters, unifying pulse-density modulation (PDM) and phase-shift control to mitigate output current amplitude fluctuations. Series-resonant converters, widely utilised for their efficiency in various applications, typically employ PDM to achieve zero-voltage and quasi-zero-current switching, minimising switching losses. However, these converters often encounter challenges with amplitude fluctuations in the output current, particularly during deep current regulation, which can compromise performance and lead to increased electromagnetic interference and overvoltage issues. The presented control strategy combines PDM with phase-shift control, significantly reducing these fluctuations and maintaining higher minimum peak currents. This unified approach ensures greater stability and efficiency in the converter's operation. Detailed experimental validation confirms the theoretical benefits, highlighting the proposed method's superiority over traditional PDM control techniques in achieving stable and efficient converter performance.
期刊介绍:
IET Power Electronics aims to attract original research papers, short communications, review articles and power electronics related educational studies. The scope covers applications and technologies in the field of power electronics with special focus on cost-effective, efficient, power dense, environmental friendly and robust solutions, which includes:
Applications:
Electric drives/generators, renewable energy, industrial and consumable applications (including lighting, welding, heating, sub-sea applications, drilling and others), medical and military apparatus, utility applications, transport and space application, energy harvesting, telecommunications, energy storage management systems, home appliances.
Technologies:
Circuits: all type of converter topologies for low and high power applications including but not limited to: inverter, rectifier, dc/dc converter, power supplies, UPS, ac/ac converter, resonant converter, high frequency converter, hybrid converter, multilevel converter, power factor correction circuits and other advanced topologies.
Components and Materials: switching devices and their control, inductors, sensors, transformers, capacitors, resistors, thermal management, filters, fuses and protection elements and other novel low-cost efficient components/materials.
Control: techniques for controlling, analysing, modelling and/or simulation of power electronics circuits and complete power electronics systems.
Design/Manufacturing/Testing: new multi-domain modelling, assembling and packaging technologies, advanced testing techniques.
Environmental Impact: Electromagnetic Interference (EMI) reduction techniques, Electromagnetic Compatibility (EMC), limiting acoustic noise and vibration, recycling techniques, use of non-rare material.
Education: teaching methods, programme and course design, use of technology in power electronics teaching, virtual laboratory and e-learning and fields within the scope of interest.
Special Issues. Current Call for papers:
Harmonic Mitigation Techniques and Grid Robustness in Power Electronic-Based Power Systems - https://digital-library.theiet.org/files/IET_PEL_CFP_HMTGRPEPS.pdf