A Study on the Instability of the Surrounding Rock Mass of the Roadway Under Disturbing Load

IF 3.5 3区 工程技术 Q3 ENERGY & FUELS
Hui Xu, Wankui Bu, Jun Qiu, Long Ma, Hao Qin, Yajun Li, Weishe Zhang, Pengxiang Li, Dong Zhang, Peng Li, Chen Jia
{"title":"A Study on the Instability of the Surrounding Rock Mass of the Roadway Under Disturbing Load","authors":"Hui Xu,&nbsp;Wankui Bu,&nbsp;Jun Qiu,&nbsp;Long Ma,&nbsp;Hao Qin,&nbsp;Yajun Li,&nbsp;Weishe Zhang,&nbsp;Pengxiang Li,&nbsp;Dong Zhang,&nbsp;Peng Li,&nbsp;Chen Jia","doi":"10.1002/ese3.2074","DOIUrl":null,"url":null,"abstract":"<p>The rock burst is one of the major dynamic disasters in deep underground engineering, such as coal mining, and has become a significant technical challenge urgently requiring solutions in rock mechanics and engineering. In the related research, there are many reports on the stability analysis of the laminar split structure under static loads and few reports on the stability analysis under dynamic loads. This paper addresses the stability of surrounding rock in deep roadways, focusing on the key factor of disturbed load. First, the paper theoretically establishes the control equation for analyzing the dynamic stability of the laminar split structure in the coal wall of roadway, deriving the minimum critical load for instability of the laminar split structure under two constraint conditions: simply supported at both ends and fixed at both ends. Second, using discrete element software, the paper analyzes the influence of disturbing load on the stability and energy accumulation characteristics of the surrounding rock of the roadway. It examines the variation patterns of stress in the surrounding rock, deformation of both sides and roof-floor, distribution of plastic zones, and energy accumulation characteristics with respect to time <i>t</i> and the intensity of disturbing load <i>p</i><sub>max</sub>. Finally, the paper analyzes the stability of surrounding rock in a mine involved in a rock burst accident. The research results provide a basis and reference for analyzing the risk of rock burst under similar conditions.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1337-1360"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2074","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

The rock burst is one of the major dynamic disasters in deep underground engineering, such as coal mining, and has become a significant technical challenge urgently requiring solutions in rock mechanics and engineering. In the related research, there are many reports on the stability analysis of the laminar split structure under static loads and few reports on the stability analysis under dynamic loads. This paper addresses the stability of surrounding rock in deep roadways, focusing on the key factor of disturbed load. First, the paper theoretically establishes the control equation for analyzing the dynamic stability of the laminar split structure in the coal wall of roadway, deriving the minimum critical load for instability of the laminar split structure under two constraint conditions: simply supported at both ends and fixed at both ends. Second, using discrete element software, the paper analyzes the influence of disturbing load on the stability and energy accumulation characteristics of the surrounding rock of the roadway. It examines the variation patterns of stress in the surrounding rock, deformation of both sides and roof-floor, distribution of plastic zones, and energy accumulation characteristics with respect to time t and the intensity of disturbing load pmax. Finally, the paper analyzes the stability of surrounding rock in a mine involved in a rock burst accident. The research results provide a basis and reference for analyzing the risk of rock burst under similar conditions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Science & Engineering
Energy Science & Engineering Engineering-Safety, Risk, Reliability and Quality
CiteScore
6.80
自引率
7.90%
发文量
298
审稿时长
11 weeks
期刊介绍: Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信