Hui Xu, Wankui Bu, Jun Qiu, Long Ma, Hao Qin, Yajun Li, Weishe Zhang, Pengxiang Li, Dong Zhang, Peng Li, Chen Jia
{"title":"A Study on the Instability of the Surrounding Rock Mass of the Roadway Under Disturbing Load","authors":"Hui Xu, Wankui Bu, Jun Qiu, Long Ma, Hao Qin, Yajun Li, Weishe Zhang, Pengxiang Li, Dong Zhang, Peng Li, Chen Jia","doi":"10.1002/ese3.2074","DOIUrl":null,"url":null,"abstract":"<p>The rock burst is one of the major dynamic disasters in deep underground engineering, such as coal mining, and has become a significant technical challenge urgently requiring solutions in rock mechanics and engineering. In the related research, there are many reports on the stability analysis of the laminar split structure under static loads and few reports on the stability analysis under dynamic loads. This paper addresses the stability of surrounding rock in deep roadways, focusing on the key factor of disturbed load. First, the paper theoretically establishes the control equation for analyzing the dynamic stability of the laminar split structure in the coal wall of roadway, deriving the minimum critical load for instability of the laminar split structure under two constraint conditions: simply supported at both ends and fixed at both ends. Second, using discrete element software, the paper analyzes the influence of disturbing load on the stability and energy accumulation characteristics of the surrounding rock of the roadway. It examines the variation patterns of stress in the surrounding rock, deformation of both sides and roof-floor, distribution of plastic zones, and energy accumulation characteristics with respect to time <i>t</i> and the intensity of disturbing load <i>p</i><sub>max</sub>. Finally, the paper analyzes the stability of surrounding rock in a mine involved in a rock burst accident. The research results provide a basis and reference for analyzing the risk of rock burst under similar conditions.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1337-1360"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2074","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2074","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The rock burst is one of the major dynamic disasters in deep underground engineering, such as coal mining, and has become a significant technical challenge urgently requiring solutions in rock mechanics and engineering. In the related research, there are many reports on the stability analysis of the laminar split structure under static loads and few reports on the stability analysis under dynamic loads. This paper addresses the stability of surrounding rock in deep roadways, focusing on the key factor of disturbed load. First, the paper theoretically establishes the control equation for analyzing the dynamic stability of the laminar split structure in the coal wall of roadway, deriving the minimum critical load for instability of the laminar split structure under two constraint conditions: simply supported at both ends and fixed at both ends. Second, using discrete element software, the paper analyzes the influence of disturbing load on the stability and energy accumulation characteristics of the surrounding rock of the roadway. It examines the variation patterns of stress in the surrounding rock, deformation of both sides and roof-floor, distribution of plastic zones, and energy accumulation characteristics with respect to time t and the intensity of disturbing load pmax. Finally, the paper analyzes the stability of surrounding rock in a mine involved in a rock burst accident. The research results provide a basis and reference for analyzing the risk of rock burst under similar conditions.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.