Two-Arm Crossover Randomized Controlled Trial Versus Meta-Analysis of N-of-1 Studies: Comparison of Statistical Efficiency in Determining an Intervention Effect
IF 1.3 3区 生物学Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Anna Eleonora Carrozzo, Georg Zimmermann, Arne C. Bathke, Daniel Neunhaeuserer, Josef Niebauer, Stefan T. Kulnik
{"title":"Two-Arm Crossover Randomized Controlled Trial Versus Meta-Analysis of N-of-1 Studies: Comparison of Statistical Efficiency in Determining an Intervention Effect","authors":"Anna Eleonora Carrozzo, Georg Zimmermann, Arne C. Bathke, Daniel Neunhaeuserer, Josef Niebauer, Stefan T. Kulnik","doi":"10.1002/bimj.70045","DOIUrl":null,"url":null,"abstract":"<p>N-of-1 trials are currently receiving broader attention in healthcare research when assessing the effectiveness of interventions. In contrast to the most commonly applied two-arm randomized controlled trial (RCT), in an N-of-1 design, the individual acts as their own control condition in the sense of a multiple crossover trial. N-of-1 trials can lead to a higher quality of patient by examining the effectiveness of an intervention at an individual level. Moreover, when a series of N-of-1 trials are properly aggregated, it becomes possible to detect an intervention effect at a population level. This work investigates whether a meta-analysis of summary data of a series of N-of-1 trials allows us to detect a statistically significant intervention effect with fewer participants than in a traditional, prospectively powered two-arm RCT and crossover design when evaluating a digital health intervention in cardiovascular care. After introducing these different analysis approaches, we compared the empirical properties in a simulation study both under the null hypothesis and with respect to power with different between-subject heterogeneity settings and in the presence of a carry-over effect. We further investigate the performance of a sequential aggregation procedure. In terms of simulated power, the threshold of 80% was achieved earlier for the aggregating procedure, requiring fewer participants.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70045","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
N-of-1 trials are currently receiving broader attention in healthcare research when assessing the effectiveness of interventions. In contrast to the most commonly applied two-arm randomized controlled trial (RCT), in an N-of-1 design, the individual acts as their own control condition in the sense of a multiple crossover trial. N-of-1 trials can lead to a higher quality of patient by examining the effectiveness of an intervention at an individual level. Moreover, when a series of N-of-1 trials are properly aggregated, it becomes possible to detect an intervention effect at a population level. This work investigates whether a meta-analysis of summary data of a series of N-of-1 trials allows us to detect a statistically significant intervention effect with fewer participants than in a traditional, prospectively powered two-arm RCT and crossover design when evaluating a digital health intervention in cardiovascular care. After introducing these different analysis approaches, we compared the empirical properties in a simulation study both under the null hypothesis and with respect to power with different between-subject heterogeneity settings and in the presence of a carry-over effect. We further investigate the performance of a sequential aggregation procedure. In terms of simulated power, the threshold of 80% was achieved earlier for the aggregating procedure, requiring fewer participants.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.