Stacking Model-Based Classifiers for Dealing With Multiple Sets of Noisy Labels

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Giulia Montani, Andrea Cappozzo
{"title":"Stacking Model-Based Classifiers for Dealing With Multiple Sets of Noisy Labels","authors":"Giulia Montani,&nbsp;Andrea Cappozzo","doi":"10.1002/bimj.70042","DOIUrl":null,"url":null,"abstract":"<p>Supervised learning in presence of multiple sets of noisy labels is a challenging task that is receiving increasing interest in the ever-evolving landscape of healthcare analytics. Such an issue arises when multiple annotators are tasked to manually label the same training samples, potentially giving rise to discrepancies in class assignments among the supplied labels with respect to the ground truth. Commonly, the labeling process is entrusted to a small group of domain experts, and different level of experience and subjectivity may result in noisy training labels. To solve the classification task leveraging on the availability of multiple data annotators, we introduce a novel ensemble methodology constructed combining model-based classifiers separately trained on single sets of noisy labels. Eigenvalue Decomposition Discriminant Analysis is employed for the definition of the base learners, and six distinct averaging strategies are proposed to combine them. Two solutions necessitate a priori information, such as the partial knowledge of the ground truth labels or the annotators' level of expertise. Differently, the remaining four approaches are entirely data-driven. A simulation study and an application on real data showcase the improved predictive performance of our proposal, while also demonstrating the ability of automatically inferring annotators' expertise level as a by-product of the learning process.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised learning in presence of multiple sets of noisy labels is a challenging task that is receiving increasing interest in the ever-evolving landscape of healthcare analytics. Such an issue arises when multiple annotators are tasked to manually label the same training samples, potentially giving rise to discrepancies in class assignments among the supplied labels with respect to the ground truth. Commonly, the labeling process is entrusted to a small group of domain experts, and different level of experience and subjectivity may result in noisy training labels. To solve the classification task leveraging on the availability of multiple data annotators, we introduce a novel ensemble methodology constructed combining model-based classifiers separately trained on single sets of noisy labels. Eigenvalue Decomposition Discriminant Analysis is employed for the definition of the base learners, and six distinct averaging strategies are proposed to combine them. Two solutions necessitate a priori information, such as the partial knowledge of the ground truth labels or the annotators' level of expertise. Differently, the remaining four approaches are entirely data-driven. A simulation study and an application on real data showcase the improved predictive performance of our proposal, while also demonstrating the ability of automatically inferring annotators' expertise level as a by-product of the learning process.

Abstract Image

基于堆叠模型的多组噪声标签分类器
存在多组噪声标签的监督学习是一项具有挑战性的任务,在不断发展的医疗保健分析领域受到越来越多的关注。当多个注释者被要求手动标记相同的训练样本时,就会出现这样的问题,这可能会导致所提供标签之间的类分配与基本事实存在差异。通常,标记过程委托给一小群领域专家,不同的经验水平和主观性可能导致嘈杂的训练标签。为了利用多个数据注释器的可用性来解决分类任务,我们引入了一种新的集成方法,该方法将基于模型的分类器组合在单个噪声标签集上单独训练。采用特征值分解判别分析对基学习器进行定义,并提出6种不同的平均策略将基学习器组合在一起。两种解决方案需要先验信息,例如对基础真值标签的部分知识或注释者的专业水平。不同的是,其余四种方法完全是数据驱动的。仿真研究和在实际数据上的应用表明,我们的建议提高了预测性能,同时也证明了自动推断注释者的专业水平作为学习过程的副产品的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信