Stacking Model-Based Classifiers for Dealing With Multiple Sets of Noisy Labels

IF 1.3 3区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Giulia Montani, Andrea Cappozzo
{"title":"Stacking Model-Based Classifiers for Dealing With Multiple Sets of Noisy Labels","authors":"Giulia Montani,&nbsp;Andrea Cappozzo","doi":"10.1002/bimj.70042","DOIUrl":null,"url":null,"abstract":"<p>Supervised learning in presence of multiple sets of noisy labels is a challenging task that is receiving increasing interest in the ever-evolving landscape of healthcare analytics. Such an issue arises when multiple annotators are tasked to manually label the same training samples, potentially giving rise to discrepancies in class assignments among the supplied labels with respect to the ground truth. Commonly, the labeling process is entrusted to a small group of domain experts, and different level of experience and subjectivity may result in noisy training labels. To solve the classification task leveraging on the availability of multiple data annotators, we introduce a novel ensemble methodology constructed combining model-based classifiers separately trained on single sets of noisy labels. Eigenvalue Decomposition Discriminant Analysis is employed for the definition of the base learners, and six distinct averaging strategies are proposed to combine them. Two solutions necessitate a priori information, such as the partial knowledge of the ground truth labels or the annotators' level of expertise. Differently, the remaining four approaches are entirely data-driven. A simulation study and an application on real data showcase the improved predictive performance of our proposal, while also demonstrating the ability of automatically inferring annotators' expertise level as a by-product of the learning process.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70042","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Supervised learning in presence of multiple sets of noisy labels is a challenging task that is receiving increasing interest in the ever-evolving landscape of healthcare analytics. Such an issue arises when multiple annotators are tasked to manually label the same training samples, potentially giving rise to discrepancies in class assignments among the supplied labels with respect to the ground truth. Commonly, the labeling process is entrusted to a small group of domain experts, and different level of experience and subjectivity may result in noisy training labels. To solve the classification task leveraging on the availability of multiple data annotators, we introduce a novel ensemble methodology constructed combining model-based classifiers separately trained on single sets of noisy labels. Eigenvalue Decomposition Discriminant Analysis is employed for the definition of the base learners, and six distinct averaging strategies are proposed to combine them. Two solutions necessitate a priori information, such as the partial knowledge of the ground truth labels or the annotators' level of expertise. Differently, the remaining four approaches are entirely data-driven. A simulation study and an application on real data showcase the improved predictive performance of our proposal, while also demonstrating the ability of automatically inferring annotators' expertise level as a by-product of the learning process.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biometrical Journal
Biometrical Journal 生物-数学与计算生物学
CiteScore
3.20
自引率
5.90%
发文量
119
审稿时长
6-12 weeks
期刊介绍: Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信