The Metabolic and Physiological Responses to Spaceflight of a Lipopeptide-Producing Bacillus subtilis

IF 5.7 2区 生物学
Wan-Qi Qin, Yi-Fan Liu, Jin-Feng Liu, Lei Zhou, Shi-Zhong Yang, Ji-Dong Gu, Bo-Zhong Mu
{"title":"The Metabolic and Physiological Responses to Spaceflight of a Lipopeptide-Producing Bacillus subtilis","authors":"Wan-Qi Qin,&nbsp;Yi-Fan Liu,&nbsp;Jin-Feng Liu,&nbsp;Lei Zhou,&nbsp;Shi-Zhong Yang,&nbsp;Ji-Dong Gu,&nbsp;Bo-Zhong Mu","doi":"10.1111/1751-7915.70111","DOIUrl":null,"url":null,"abstract":"<p>Outer space is an extreme environment and the survival of many microorganisms after spaceflight is well established. However, adaptations of <i>Bacillus subtilis</i> to space stress, particularly metabolism, are largely unknown. Here, we first performed a spaceflight mission of the <i>B. subtilis</i> TD7 strain and compared the spaceflight-exposed strain with the wild-type in terms of their phenotype, biofilm formation and secondary metabolism. The spaceflight-exposed strain exhibited slower growth, different morphology and decreased biofilm formation. Importantly, a decline in lipopeptide production was observed after spaceflight. Multi-omics approaches were used to uncover the molecular mechanisms underlying secondary metabolism and 997 differentially expressed genes (DEGs) were found, involving the TCA cycle, fatty acid degradation, amino acid biosynthesis and quorum sensing systems. Further analysis of 26 lipopeptide-related DEGs further elucidated the relationship between the space environment and secondary metabolism regulation. Our findings could contribute to a better understanding of the relationship between the space environment and microbial adaptation mechanisms.</p>","PeriodicalId":209,"journal":{"name":"Microbial Biotechnology","volume":"18 3","pages":""},"PeriodicalIF":5.7000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1751-7915.70111","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1751-7915.70111","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Outer space is an extreme environment and the survival of many microorganisms after spaceflight is well established. However, adaptations of Bacillus subtilis to space stress, particularly metabolism, are largely unknown. Here, we first performed a spaceflight mission of the B. subtilis TD7 strain and compared the spaceflight-exposed strain with the wild-type in terms of their phenotype, biofilm formation and secondary metabolism. The spaceflight-exposed strain exhibited slower growth, different morphology and decreased biofilm formation. Importantly, a decline in lipopeptide production was observed after spaceflight. Multi-omics approaches were used to uncover the molecular mechanisms underlying secondary metabolism and 997 differentially expressed genes (DEGs) were found, involving the TCA cycle, fatty acid degradation, amino acid biosynthesis and quorum sensing systems. Further analysis of 26 lipopeptide-related DEGs further elucidated the relationship between the space environment and secondary metabolism regulation. Our findings could contribute to a better understanding of the relationship between the space environment and microbial adaptation mechanisms.

Abstract Image

产脂肽枯草芽孢杆菌在太空中的代谢和生理反应
外太空是一个极端的环境,许多微生物在太空飞行后的生存是公认的。然而,枯草芽孢杆菌对空间压力的适应性,特别是代谢,在很大程度上是未知的。在这里,我们首先对枯草芽孢杆菌TD7菌株进行了太空任务,并在表型、生物膜形成和次生代谢方面与野生型进行了比较。暴露于太空飞行的菌株表现出生长缓慢、形态不同和生物膜形成减少的特点。重要的是,在太空飞行后观察到脂肽产量的下降。利用多组学方法揭示了次生代谢的分子机制,发现了997个差异表达基因(deg),涉及TCA循环、脂肪酸降解、氨基酸生物合成和群体感应系统。进一步分析26个与脂肽相关的deg,进一步阐明了空间环境与次生代谢调节的关系。我们的发现有助于更好地理解空间环境与微生物适应机制之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbial Biotechnology
Microbial Biotechnology Immunology and Microbiology-Applied Microbiology and Biotechnology
CiteScore
11.20
自引率
3.50%
发文量
162
审稿时长
1 months
期刊介绍: Microbial Biotechnology publishes papers of original research reporting significant advances in any aspect of microbial applications, including, but not limited to biotechnologies related to: Green chemistry; Primary metabolites; Food, beverages and supplements; Secondary metabolites and natural products; Pharmaceuticals; Diagnostics; Agriculture; Bioenergy; Biomining, including oil recovery and processing; Bioremediation; Biopolymers, biomaterials; Bionanotechnology; Biosurfactants and bioemulsifiers; Compatible solutes and bioprotectants; Biosensors, monitoring systems, quantitative microbial risk assessment; Technology development; Protein engineering; Functional genomics; Metabolic engineering; Metabolic design; Systems analysis, modelling; Process engineering; Biologically-based analytical methods; Microbially-based strategies in public health; Microbially-based strategies to influence global processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信