Deciphering Aging, Genetic, and Epigenetic Heterogeneity in Cancer Evolution: Toward Personalized Precision Preventative Medicine

Lamis Naddaf, Sheng Li
{"title":"Deciphering Aging, Genetic, and Epigenetic Heterogeneity in Cancer Evolution: Toward Personalized Precision Preventative Medicine","authors":"Lamis Naddaf,&nbsp;Sheng Li","doi":"10.1002/aac2.12078","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Cancer's inherent ability to evolve presents significant challenges for its categorization and treatment. Cancer evolution is driven by genetic, epigenetic, and phenotypic diversity influenced by microenvironment changes. Aging plays a crucial role by altering the microenvironment and inducing substantial genetic and epigenetic heterogeneity within an individual's somatic cells even before cancer initiation.</p>\n </section>\n \n <section>\n \n <h3> Objectives</h3>\n \n <p>This review highlights the clinical significance of epigenetic mechanisms in cancer evolution, focusing on hematopoietic and solid tumors. The review aims to explore opportunities for integrating evolutionary principles and data science into cancer research.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>The review synthesizes recent advancements in omics technologies, single-cell sequencing, and genetic barcoding to elucidate epigenetic mechanisms and aging's role in cancer evolution.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Epigenetic mechanisms' high plasticity generates heritable phenotypic diversity, driving malignant evolution toward poor prognosis. Advances in single-cell sequencing and genetic barcoding enable the precise detection and tracking of biomarkers, allowing early, personalized interventions. Incorporating data science into cancer research has the potential to map, predict, and prevent cancer evolution effectively.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Understanding cancer evolution through novel technologies and data analysis offers a proactive approach to cancer prevention and treatment. By predicting key evolutionary events and leveraging personalized strategies, patient outcomes can be improved, and healthcare burdens reduced, marking a transformative shift in oncology.</p>\n </section>\n </div>","PeriodicalId":72128,"journal":{"name":"Aging and cancer","volume":"6 1","pages":"19-29"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aac2.12078","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging and cancer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aac2.12078","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Cancer's inherent ability to evolve presents significant challenges for its categorization and treatment. Cancer evolution is driven by genetic, epigenetic, and phenotypic diversity influenced by microenvironment changes. Aging plays a crucial role by altering the microenvironment and inducing substantial genetic and epigenetic heterogeneity within an individual's somatic cells even before cancer initiation.

Objectives

This review highlights the clinical significance of epigenetic mechanisms in cancer evolution, focusing on hematopoietic and solid tumors. The review aims to explore opportunities for integrating evolutionary principles and data science into cancer research.

Methods

The review synthesizes recent advancements in omics technologies, single-cell sequencing, and genetic barcoding to elucidate epigenetic mechanisms and aging's role in cancer evolution.

Results

Epigenetic mechanisms' high plasticity generates heritable phenotypic diversity, driving malignant evolution toward poor prognosis. Advances in single-cell sequencing and genetic barcoding enable the precise detection and tracking of biomarkers, allowing early, personalized interventions. Incorporating data science into cancer research has the potential to map, predict, and prevent cancer evolution effectively.

Conclusion

Understanding cancer evolution through novel technologies and data analysis offers a proactive approach to cancer prevention and treatment. By predicting key evolutionary events and leveraging personalized strategies, patient outcomes can be improved, and healthcare burdens reduced, marking a transformative shift in oncology.

Abstract Image

解读癌症进化中的衰老、遗传和表观遗传异质性:迈向个性化精准预防医学
癌症固有的进化能力对其分类和治疗提出了重大挑战。癌症的进化是由微环境变化影响的遗传、表观遗传和表型多样性驱动的。甚至在癌症发生之前,衰老通过改变微环境和诱导个体体细胞内的大量遗传和表观遗传异质性起着至关重要的作用。本文综述了肿瘤进化的表观遗传机制的临床意义,重点介绍了造血肿瘤和实体肿瘤。这篇综述旨在探索将进化原理和数据科学整合到癌症研究中的机会。方法综合近年来组学技术、单细胞测序技术和基因条形码技术的研究进展,探讨衰老在肿瘤进化中的作用及表观遗传机制。结果表观遗传机制的高度可塑性产生了可遗传的表型多样性,导致恶性进化向预后不良的方向发展。单细胞测序和基因条形码技术的进步使生物标记物的精确检测和跟踪成为可能,从而实现早期、个性化的干预。将数据科学纳入癌症研究有可能有效地绘制、预测和预防癌症的演变。结论通过新技术和数据分析来了解癌症的演变,为癌症的预防和治疗提供了积极的途径。通过预测关键的进化事件和利用个性化策略,可以改善患者的治疗结果,减轻医疗负担,标志着肿瘤学的转型转变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信