Maja Grbić, Aldo Canova, Luca Giaccone, Aleksandar Pavlović, Sergio Grasso
{"title":"Mitigation of Low Frequency Magnetic Field Emitted by 10/0.4 kV Substation in the School","authors":"Maja Grbić, Aldo Canova, Luca Giaccone, Aleksandar Pavlović, Sergio Grasso","doi":"10.1002/jnm.70015","DOIUrl":null,"url":null,"abstract":"<p>The article is related to mitigation of magnetic field emitted by a 10/0.4 kV substation located in a primary school in Belgrade, Serbia. During the first testing in the classroom located directly above the substation, the measured values of magnetic flux density significantly exceeded the reference level of 40 μT prescribed by Serbian legislation, and it was concluded that the field levels at the transformer rated load could exceed the reference level of 100 μT prescribed by European Council Recommendation 1999/519/EC. For that reason, the 0.4 kV busbars located near the ceiling of the substation were removed and replaced with cables that were placed on the floor of the substation. The testing was repeated and the measured values as well as the values at the rated load were lower than 40 μT. However, above the locations where the cables were connected to the transformer and to the 0.4 kV switchboard, the field levels were still higher than in the rest of the classroom. The focus of this article is to analyze different solutions based on passive shielding for the reduction of magnetic field in these two areas. Seven solutions based on conductive shields with different geometries are analyzed. The substation and the shields are modeled by using appropriate software tools to determine which shield is the most effective. In the case of Solution 7, the lowest field values were obtained. The highest value of magnetic flux density in this case was 6.95 μT at the transformer rated load.</p>","PeriodicalId":50300,"journal":{"name":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","volume":"38 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jnm.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Modelling-Electronic Networks Devices and Fields","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jnm.70015","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The article is related to mitigation of magnetic field emitted by a 10/0.4 kV substation located in a primary school in Belgrade, Serbia. During the first testing in the classroom located directly above the substation, the measured values of magnetic flux density significantly exceeded the reference level of 40 μT prescribed by Serbian legislation, and it was concluded that the field levels at the transformer rated load could exceed the reference level of 100 μT prescribed by European Council Recommendation 1999/519/EC. For that reason, the 0.4 kV busbars located near the ceiling of the substation were removed and replaced with cables that were placed on the floor of the substation. The testing was repeated and the measured values as well as the values at the rated load were lower than 40 μT. However, above the locations where the cables were connected to the transformer and to the 0.4 kV switchboard, the field levels were still higher than in the rest of the classroom. The focus of this article is to analyze different solutions based on passive shielding for the reduction of magnetic field in these two areas. Seven solutions based on conductive shields with different geometries are analyzed. The substation and the shields are modeled by using appropriate software tools to determine which shield is the most effective. In the case of Solution 7, the lowest field values were obtained. The highest value of magnetic flux density in this case was 6.95 μT at the transformer rated load.
期刊介绍:
Prediction through modelling forms the basis of engineering design. The computational power at the fingertips of the professional engineer is increasing enormously and techniques for computer simulation are changing rapidly. Engineers need models which relate to their design area and which are adaptable to new design concepts. They also need efficient and friendly ways of presenting, viewing and transmitting the data associated with their models.
The International Journal of Numerical Modelling: Electronic Networks, Devices and Fields provides a communication vehicle for numerical modelling methods and data preparation methods associated with electrical and electronic circuits and fields. It concentrates on numerical modelling rather than abstract numerical mathematics.
Contributions on numerical modelling will cover the entire subject of electrical and electronic engineering. They will range from electrical distribution networks to integrated circuits on VLSI design, and from static electric and magnetic fields through microwaves to optical design. They will also include the use of electrical networks as a modelling medium.