M. Murugan, P. V. Elumalai, KCK Vijayakumar, M. Babu, K. Suresh Kumar, M. Ganesh, Liu Kuang, S. Prabhakar
{"title":"A Comprehensive Review of Thermal Management Methods and Ideal System Design for Improved Electric Vehicle Battery Pack Performance and Safety","authors":"M. Murugan, P. V. Elumalai, KCK Vijayakumar, M. Babu, K. Suresh Kumar, M. Ganesh, Liu Kuang, S. Prabhakar","doi":"10.1002/ese3.2081","DOIUrl":null,"url":null,"abstract":"<p>The scientific aim of the study is to propose a comprehensive review of thermal management systems (TMSs) used in electric vehicle (EV) battery packs on matters pertaining to performance enhancement, improvements in safety, and reliability. This includes the various thermal management strategies, addressing some of the problems posed by the dynamic nature of operating conditions, and evaluating emerging TMS technologies. From this aspect, the problem of this research focused on the description of a detailed insight into the efficiencies of TMSs inside an EV, pointing to the impacts of various cooling mechanisms, mostly liquid cooling, air cooling, and phase-change materials. The research study further evaluates the integration of TMS in vehicle design and its effects on battery lifespan, charging speeds, and environmental impacts. The benefits, disadvantages, and specific applications of each method are discussed about EVs. Taking into consideration the fast charging, high-power, and environmental effects, further discussion is made on the specific challenges that come with dynamic operating conditions of EVs. This is shown through the industry's constant pursuit to develop in this critical area through the discovery of novel technologies, including predictive control algorithms and superior thermal materials. It discusses in depth how heat management is integrated into the general vehicle design and how this impacts battery lifespan, charging speed, and range. In conclusion, it is a source of material for research scholars, engineers, and policymakers in charge of developing EVs by synthesizing what already exists, highlighting trends at current times, and outlining possible future directions in the continuum of optimizing TMS for the next generation of driving automobile transportation batteries.</p>","PeriodicalId":11673,"journal":{"name":"Energy Science & Engineering","volume":"13 3","pages":"1011-1036"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ese3.2081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ese3.2081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The scientific aim of the study is to propose a comprehensive review of thermal management systems (TMSs) used in electric vehicle (EV) battery packs on matters pertaining to performance enhancement, improvements in safety, and reliability. This includes the various thermal management strategies, addressing some of the problems posed by the dynamic nature of operating conditions, and evaluating emerging TMS technologies. From this aspect, the problem of this research focused on the description of a detailed insight into the efficiencies of TMSs inside an EV, pointing to the impacts of various cooling mechanisms, mostly liquid cooling, air cooling, and phase-change materials. The research study further evaluates the integration of TMS in vehicle design and its effects on battery lifespan, charging speeds, and environmental impacts. The benefits, disadvantages, and specific applications of each method are discussed about EVs. Taking into consideration the fast charging, high-power, and environmental effects, further discussion is made on the specific challenges that come with dynamic operating conditions of EVs. This is shown through the industry's constant pursuit to develop in this critical area through the discovery of novel technologies, including predictive control algorithms and superior thermal materials. It discusses in depth how heat management is integrated into the general vehicle design and how this impacts battery lifespan, charging speed, and range. In conclusion, it is a source of material for research scholars, engineers, and policymakers in charge of developing EVs by synthesizing what already exists, highlighting trends at current times, and outlining possible future directions in the continuum of optimizing TMS for the next generation of driving automobile transportation batteries.
期刊介绍:
Energy Science & Engineering is a peer reviewed, open access journal dedicated to fundamental and applied research on energy and supply and use. Published as a co-operative venture of Wiley and SCI (Society of Chemical Industry), the journal offers authors a fast route to publication and the ability to share their research with the widest possible audience of scientists, professionals and other interested people across the globe. Securing an affordable and low carbon energy supply is a critical challenge of the 21st century and the solutions will require collaboration between scientists and engineers worldwide. This new journal aims to facilitate collaboration and spark innovation in energy research and development. Due to the importance of this topic to society and economic development the journal will give priority to quality research papers that are accessible to a broad readership and discuss sustainable, state-of-the art approaches to shaping the future of energy. This multidisciplinary journal will appeal to all researchers and professionals working in any area of energy in academia, industry or government, including scientists, engineers, consultants, policy-makers, government officials, economists and corporate organisations.