Angela Andreella, Livio Finos, Bruno Scarpa, Matteo Stocchero
{"title":"Toward Power Analysis for Partial Least Squares-Based Methods","authors":"Angela Andreella, Livio Finos, Bruno Scarpa, Matteo Stocchero","doi":"10.1002/bimj.70050","DOIUrl":null,"url":null,"abstract":"<p>In recent years, power analysis has become widely used in applied sciences, with the increasing importance of the replicability issue. When distribution-free methods, such as partial least squares (PLS)-based approaches, are considered, formulating power analysis is challenging. In this study, we introduce the methodological framework of a new procedure for performing power analysis when PLS-based methods are used. Data are simulated by the Monte Carlo method, assuming the null hypothesis of no effect is false and exploiting the latent structure estimated by PLS in the pilot data. In this way, the complex correlation data structure is explicitly considered in power analysis and sample size estimation. The paper offers insights into selecting test statistics for the power analysis procedure, comparing accuracy-based tests and those based on continuous parameters estimated by PLS. Simulated and real data sets are investigated to show how the method works in practice.</p>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"67 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bimj.70050","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.70050","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, power analysis has become widely used in applied sciences, with the increasing importance of the replicability issue. When distribution-free methods, such as partial least squares (PLS)-based approaches, are considered, formulating power analysis is challenging. In this study, we introduce the methodological framework of a new procedure for performing power analysis when PLS-based methods are used. Data are simulated by the Monte Carlo method, assuming the null hypothesis of no effect is false and exploiting the latent structure estimated by PLS in the pilot data. In this way, the complex correlation data structure is explicitly considered in power analysis and sample size estimation. The paper offers insights into selecting test statistics for the power analysis procedure, comparing accuracy-based tests and those based on continuous parameters estimated by PLS. Simulated and real data sets are investigated to show how the method works in practice.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.