Carlotta Cazzolli, Marco Chierici, Monica Dallabona, Chiara Guella, Giuseppe Jurman
{"title":"Neuropsychological tests and machine learning: identifying predictors of MCI and dementia progression","authors":"Carlotta Cazzolli, Marco Chierici, Monica Dallabona, Chiara Guella, Giuseppe Jurman","doi":"10.1007/s40520-025-02962-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Early prediction of progression in dementia is of major importance for providing patients with adequate clinical care, with considerable impact on the organization of the whole healthcare system.</p><h3>Aims</h3><p>The main task is tailoring robust and consolidated machine learning models to detect which neuropsychological tests are more effective in predicting a patient’s mental status. In a translational medicine perspective, such identification tool should find its place in the clinician’s toolbox as a support throughout his daily diagnostic routine. A second objective involves predicting the patient’s diagnosis based on the results of the cognitive assessment.</p><h3>Methods</h3><p>281 patients with MCI or dementia diagnosis were assessed through 14 commonly administered neuropsychological tests designed to evaluate different cognitive domains. A suite of machine learning models, trained on different subsets of data, was used to detect the most informative tests and to predict the patient’s diagnosis. Two external validation datasets containing MMSE and FAB tests were involved in this second task.</p><h3>Results</h3><p>The tests qualitatively and statistically associated to a cognitive decline are MMSE, FAB, BSTR, AM, and VSF, of which at least three were considered the most informative also by machine learning. 73% average accuracy was obtained in the diagnosis prediction on three subsets of original and external data.</p><h3>Discussion</h3><p>Detecting the most informative tests could reduce the visits’ time and prevent the cognitive assessment from being biased by external factors. Machine learning models’ prediction represents a useful baseline for the clinician’s actual diagnosis and a reliable insight into the future development of the patient’s cognitive status.</p></div>","PeriodicalId":7720,"journal":{"name":"Aging Clinical and Experimental Research","volume":"37 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40520-025-02962-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aging Clinical and Experimental Research","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s40520-025-02962-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Early prediction of progression in dementia is of major importance for providing patients with adequate clinical care, with considerable impact on the organization of the whole healthcare system.
Aims
The main task is tailoring robust and consolidated machine learning models to detect which neuropsychological tests are more effective in predicting a patient’s mental status. In a translational medicine perspective, such identification tool should find its place in the clinician’s toolbox as a support throughout his daily diagnostic routine. A second objective involves predicting the patient’s diagnosis based on the results of the cognitive assessment.
Methods
281 patients with MCI or dementia diagnosis were assessed through 14 commonly administered neuropsychological tests designed to evaluate different cognitive domains. A suite of machine learning models, trained on different subsets of data, was used to detect the most informative tests and to predict the patient’s diagnosis. Two external validation datasets containing MMSE and FAB tests were involved in this second task.
Results
The tests qualitatively and statistically associated to a cognitive decline are MMSE, FAB, BSTR, AM, and VSF, of which at least three were considered the most informative also by machine learning. 73% average accuracy was obtained in the diagnosis prediction on three subsets of original and external data.
Discussion
Detecting the most informative tests could reduce the visits’ time and prevent the cognitive assessment from being biased by external factors. Machine learning models’ prediction represents a useful baseline for the clinician’s actual diagnosis and a reliable insight into the future development of the patient’s cognitive status.
期刊介绍:
Aging clinical and experimental research offers a multidisciplinary forum on the progressing field of gerontology and geriatrics. The areas covered by the journal include: biogerontology, neurosciences, epidemiology, clinical gerontology and geriatric assessment, social, economical and behavioral gerontology. “Aging clinical and experimental research” appears bimonthly and publishes review articles, original papers and case reports.