{"title":"Structural and Optical Anomalies in Thin Films Grown in a Magnetic Field by Electron-Assisted Vacuum Deposition of PTFE","authors":"Viachaslau Ksianzou, Claus Villringer, Kostyantyn Grytsenko, Demyd Pekur, Petro Lytvyn, Mykola Sopinskyy, Iryna Lebedyeva, Agata Niemczyk, Jolanta Baranowska","doi":"10.1002/mame.202400332","DOIUrl":null,"url":null,"abstract":"<p>Polytetrafluoroethylene (PTFE) films are deposited in parallel and perpendicular magnetic fields (MF) by electron-enhanced vacuum deposition (EVD) and EVD + low-temperature plasma (LTP) methods. The structure, morphology, and nanomechanical properties of the films are studied by infrared spectroscopy (IRS), atomic force microscopy (AFM), and spectroscopic ellipsometry. The structure of the thicker films is closer to that of bulk PTFE than that of thin films. The films' crystallinity and surface roughness are higher than those deposited without MF. The birefringence of the refractive index (n) of the films deposited in the MF is inverse to the anisotropy of the n of the films deposited without MF. The hardness of the films is close to that of bulk PTFE.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400332","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400332","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Polytetrafluoroethylene (PTFE) films are deposited in parallel and perpendicular magnetic fields (MF) by electron-enhanced vacuum deposition (EVD) and EVD + low-temperature plasma (LTP) methods. The structure, morphology, and nanomechanical properties of the films are studied by infrared spectroscopy (IRS), atomic force microscopy (AFM), and spectroscopic ellipsometry. The structure of the thicker films is closer to that of bulk PTFE than that of thin films. The films' crystallinity and surface roughness are higher than those deposited without MF. The birefringence of the refractive index (n) of the films deposited in the MF is inverse to the anisotropy of the n of the films deposited without MF. The hardness of the films is close to that of bulk PTFE.
期刊介绍:
Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications.
Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science.
The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments.
ISSN: 1438-7492 (print). 1439-2054 (online).
Readership:Polymer scientists, chemists, physicists, materials scientists, engineers
Abstracting and Indexing Information:
CAS: Chemical Abstracts Service (ACS)
CCR Database (Clarivate Analytics)
Chemical Abstracts Service/SciFinder (ACS)
Chemistry Server Reaction Center (Clarivate Analytics)
ChemWeb (ChemIndustry.com)
Chimica Database (Elsevier)
COMPENDEX (Elsevier)
Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics)
Directory of Open Access Journals (DOAJ)
INSPEC (IET)
Journal Citation Reports/Science Edition (Clarivate Analytics)
Materials Science & Engineering Database (ProQuest)
PASCAL Database (INIST/CNRS)
Polymer Library (iSmithers RAPRA)
Reaction Citation Index (Clarivate Analytics)
Science Citation Index (Clarivate Analytics)
Science Citation Index Expanded (Clarivate Analytics)
SciTech Premium Collection (ProQuest)
SCOPUS (Elsevier)
Technology Collection (ProQuest)
Web of Science (Clarivate Analytics)