Flame Retardancy via in-Mould Coating and Durability of Flame Retardants After Mechanical Recycling in all-polyamide Composites Prepared by In Situ Polymerisation

IF 4.2 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zsófia Kovács, Andrea Toldy
{"title":"Flame Retardancy via in-Mould Coating and Durability of Flame Retardants After Mechanical Recycling in all-polyamide Composites Prepared by In Situ Polymerisation","authors":"Zsófia Kovács,&nbsp;Andrea Toldy","doi":"10.1002/mame.202400325","DOIUrl":null,"url":null,"abstract":"<p>Sustainable development requires that the structural materials can be easily recycled. The advantage of all-polyamide composites (APCs) is that the matrix and the reinforcing material come from the same material family and can be easily mechanically recycled. In the research, polyamide 6.6 (PA6.6) reinforced polyamide 6 (PA6) composites by anionic ring-opening polymerisation are prepared and created a flame retardant coating on their surface by in-mould coating. The thermal stability of the created flame retarded APCs is investigated by thermogravimetric analysis (TGA), and the flammability is tested by UL-94 test, limiting oxygen index (LOI) and mass loss type cone calorimetry (MLC). The coatings reduced the peak heat release rate (pHRR) by up to 49% and increased the residual mass after combustion. The flame retarded APCs are mechanically recycled with the addition of 50 mass% primary material, and their thermal properties and flammability are investigated. The most effective formulations fully preserved their ability to reduce pHRR, demonstrating the durability of flame retardant properties through multiple life cycles. In the case of the sample containing 3% phosphorus from hexaphenoxycyclotriphosphazene (HPCTP) and 4% expandable graphite (EG), the pHRR after recycling is reduced by 35% compared to primary APC without flame retardants.</p>","PeriodicalId":18151,"journal":{"name":"Macromolecular Materials and Engineering","volume":"310 3","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mame.202400325","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Materials and Engineering","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mame.202400325","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sustainable development requires that the structural materials can be easily recycled. The advantage of all-polyamide composites (APCs) is that the matrix and the reinforcing material come from the same material family and can be easily mechanically recycled. In the research, polyamide 6.6 (PA6.6) reinforced polyamide 6 (PA6) composites by anionic ring-opening polymerisation are prepared and created a flame retardant coating on their surface by in-mould coating. The thermal stability of the created flame retarded APCs is investigated by thermogravimetric analysis (TGA), and the flammability is tested by UL-94 test, limiting oxygen index (LOI) and mass loss type cone calorimetry (MLC). The coatings reduced the peak heat release rate (pHRR) by up to 49% and increased the residual mass after combustion. The flame retarded APCs are mechanically recycled with the addition of 50 mass% primary material, and their thermal properties and flammability are investigated. The most effective formulations fully preserved their ability to reduce pHRR, demonstrating the durability of flame retardant properties through multiple life cycles. In the case of the sample containing 3% phosphorus from hexaphenoxycyclotriphosphazene (HPCTP) and 4% expandable graphite (EG), the pHRR after recycling is reduced by 35% compared to primary APC without flame retardants.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Materials and Engineering
Macromolecular Materials and Engineering 工程技术-材料科学:综合
CiteScore
7.30
自引率
5.10%
发文量
328
审稿时长
1.6 months
期刊介绍: Macromolecular Materials and Engineering is the high-quality polymer science journal dedicated to the design, modification, characterization, processing and application of advanced polymeric materials, including membranes, sensors, sustainability, composites, fibers, foams, 3D printing, actuators as well as energy and electronic applications. Macromolecular Materials and Engineering is among the top journals publishing original research in polymer science. The journal presents strictly peer-reviewed Research Articles, Reviews, Perspectives and Comments. ISSN: 1438-7492 (print). 1439-2054 (online). Readership:Polymer scientists, chemists, physicists, materials scientists, engineers Abstracting and Indexing Information: CAS: Chemical Abstracts Service (ACS) CCR Database (Clarivate Analytics) Chemical Abstracts Service/SciFinder (ACS) Chemistry Server Reaction Center (Clarivate Analytics) ChemWeb (ChemIndustry.com) Chimica Database (Elsevier) COMPENDEX (Elsevier) Current Contents: Physical, Chemical & Earth Sciences (Clarivate Analytics) Directory of Open Access Journals (DOAJ) INSPEC (IET) Journal Citation Reports/Science Edition (Clarivate Analytics) Materials Science & Engineering Database (ProQuest) PASCAL Database (INIST/CNRS) Polymer Library (iSmithers RAPRA) Reaction Citation Index (Clarivate Analytics) Science Citation Index (Clarivate Analytics) Science Citation Index Expanded (Clarivate Analytics) SciTech Premium Collection (ProQuest) SCOPUS (Elsevier) Technology Collection (ProQuest) Web of Science (Clarivate Analytics)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信