Isabella Luiza Martins de Aquino, Bruna Luiza Azevedo, Nidia Esther Colquehuanca Arias, Matheus Felipe dos Reis Rodrigues, Jônatas Santos Abrahão
{"title":"The final cut: how giant viruses of protists are released from their hosts’ cells","authors":"Isabella Luiza Martins de Aquino, Bruna Luiza Azevedo, Nidia Esther Colquehuanca Arias, Matheus Felipe dos Reis Rodrigues, Jônatas Santos Abrahão","doi":"10.1007/s00705-025-06261-1","DOIUrl":null,"url":null,"abstract":"<div><p>Viruses are the most abundant biological entities on Earth, with an estimated 10<sup>31</sup> viruses in the biosphere. These particles serve as the crucial link between viral replication cycles in different host cells, employing a variety of release mechanisms, such as cell lysis, exocytosis, and budding. Among the diverse viral groups, giant viruses have garnered significant scientific interest due to their complex particles and genomes. Giant viruses may infect amoebae and other unicellular protists, exhibiting remarkable variation in size, shape, and symmetry. They belong to the realm <i>Varidnaviria</i>, kingdom <i>Bamfordvirae</i>, and phylum <i>Nucleocytoviricota</i>. This review examines the diverse viral release strategies employed by giant viruses, highlighting the mechanisms they use to exit host cells. These include the induction of cell lysis, vesicle formation, and exocytosis, which vary not only between different species but also within individual viral groups. The diversity of release mechanisms reflects the complex evolutionary adaptations of giant viruses, providing information about their biology and life cycles.</p></div>","PeriodicalId":8359,"journal":{"name":"Archives of Virology","volume":"170 4","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Virology","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s00705-025-06261-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"VIROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Viruses are the most abundant biological entities on Earth, with an estimated 1031 viruses in the biosphere. These particles serve as the crucial link between viral replication cycles in different host cells, employing a variety of release mechanisms, such as cell lysis, exocytosis, and budding. Among the diverse viral groups, giant viruses have garnered significant scientific interest due to their complex particles and genomes. Giant viruses may infect amoebae and other unicellular protists, exhibiting remarkable variation in size, shape, and symmetry. They belong to the realm Varidnaviria, kingdom Bamfordvirae, and phylum Nucleocytoviricota. This review examines the diverse viral release strategies employed by giant viruses, highlighting the mechanisms they use to exit host cells. These include the induction of cell lysis, vesicle formation, and exocytosis, which vary not only between different species but also within individual viral groups. The diversity of release mechanisms reflects the complex evolutionary adaptations of giant viruses, providing information about their biology and life cycles.
期刊介绍:
Archives of Virology publishes original contributions from all branches of research on viruses, virus-like agents, and virus infections of humans, animals, plants, insects, and bacteria. Coverage spans a broad spectrum of topics, from descriptions of newly discovered viruses, to studies of virus structure, composition, and genetics, to studies of virus interactions with host cells, organisms and populations. Studies employ molecular biologic, molecular genetics, and current immunologic and epidemiologic approaches. Contents include studies on the molecular pathogenesis, pathophysiology, and genetics of virus infections in individual hosts, and studies on the molecular epidemiology of virus infections in populations. Also included are studies involving applied research such as diagnostic technology development, monoclonal antibody panel development, vaccine development, and antiviral drug development.Archives of Virology wishes to publish obituaries of recently deceased well-known virologists and leading figures in virology.