Water-stable Eu(III) coordination polymer-based ratiometric fluorescence sensor integrated with smartphone for onsite monitoring of doxycycline hydrochloride in milk

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Cancan Zhang, Xiaochen Deng, Huanhuan Tan, Xiaoxin Zhang, Jiao Wu, Yuyang Zhao, Lingyan Zhao
{"title":"Water-stable Eu(III) coordination polymer-based ratiometric fluorescence sensor integrated with smartphone for onsite monitoring of doxycycline hydrochloride in milk","authors":"Cancan Zhang,&nbsp;Xiaochen Deng,&nbsp;Huanhuan Tan,&nbsp;Xiaoxin Zhang,&nbsp;Jiao Wu,&nbsp;Yuyang Zhao,&nbsp;Lingyan Zhao","doi":"10.1007/s00604-025-07081-5","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread misuse of doxycycline hydrochloride (Dox) in livestock farming has necessitated the development of rapid and reliable methods for monitoring its residues in food products. Herein, a water-stable europium coordination polymer-Eu(C<sub>2</sub>O<sub>4</sub>)1.5(H<sub>2</sub>O)ₙ (Eu-CP) with a layered structure was synthesized via a one-step hydrothermal approach. Leveraging its dual-emission properties (455 nm ligand-centered blue emission and 615 nm Eu(III)-based red emission), we engineered a ratiometric fluorescence sensor (I₆₁₅/I₄₅₅) for Dox detection. The sensing mechanism involves synergistic effects of the antenna effect and Dox@Eu-CP complexation, enabling selective Dox recognition with a wide linear range (10–100 μM) and a low detection limit (0.46 μM, S/N = 3). To facilitate onsite analysis, a smartphone-integrated platform was developed, translating the Dox concentration-dependent color transition (blue → red) into quantifiable R/G values via a custom Android application. Practical applicability was demonstrated in milk samples, achieving recoveries of 82.4–119.4% (fluorescence) and 87.8–113.3% (smartphone) with RSD &lt; 5%. This work pioneers the integration of lanthanide coordination polymers with portable digital detection, offering a green and visual strategy for antibiotic residue monitoring in food safety.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 4","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-025-07081-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The widespread misuse of doxycycline hydrochloride (Dox) in livestock farming has necessitated the development of rapid and reliable methods for monitoring its residues in food products. Herein, a water-stable europium coordination polymer-Eu(C2O4)1.5(H2O)ₙ (Eu-CP) with a layered structure was synthesized via a one-step hydrothermal approach. Leveraging its dual-emission properties (455 nm ligand-centered blue emission and 615 nm Eu(III)-based red emission), we engineered a ratiometric fluorescence sensor (I₆₁₅/I₄₅₅) for Dox detection. The sensing mechanism involves synergistic effects of the antenna effect and Dox@Eu-CP complexation, enabling selective Dox recognition with a wide linear range (10–100 μM) and a low detection limit (0.46 μM, S/N = 3). To facilitate onsite analysis, a smartphone-integrated platform was developed, translating the Dox concentration-dependent color transition (blue → red) into quantifiable R/G values via a custom Android application. Practical applicability was demonstrated in milk samples, achieving recoveries of 82.4–119.4% (fluorescence) and 87.8–113.3% (smartphone) with RSD < 5%. This work pioneers the integration of lanthanide coordination polymers with portable digital detection, offering a green and visual strategy for antibiotic residue monitoring in food safety.

Graphical Abstract

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信