Jeong-Gil Kim, Jaehyoung Ko, Hyung-Kyu Lim, Yerin Jo, Hayoung Yu, Min Woo Kim, Min Ji Kim, Hyeon Su Jeong, Jinwoo Lee, Yongho Joo, Nam Dong Kim
{"title":"Organic Radical-Boosted Ionic Conductivity in Redox Polymer Electrolyte for Advanced Fiber-Shaped Energy Storage Devices","authors":"Jeong-Gil Kim, Jaehyoung Ko, Hyung-Kyu Lim, Yerin Jo, Hayoung Yu, Min Woo Kim, Min Ji Kim, Hyeon Su Jeong, Jinwoo Lee, Yongho Joo, Nam Dong Kim","doi":"10.1007/s40820-025-01700-9","DOIUrl":null,"url":null,"abstract":"<div><p>Fiber-shaped energy storage devices (FSESDs) with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation. Among the solid options, polymer electrolytes are particularly preferred due to their robustness and flexibility, although their low ionic conductivity remains a significant challenge. Here, we present a redox polymer electrolyte (HT_RPE) with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HT) as a multi-functional additive. HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species. These synergetic effects lead to high ionic conductivity (73.5 mS cm<sup>−1</sup>) based on a lower activation energy of 0.13 eV than other redox additives. Moreover, HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes (energy density of 25.4 W h kg<sup>−1</sup> at a power density of 25,000 W kg<sup>−1</sup>) without typical active materials, along with excellent stability (capacitance retention of 91.2% after 8,000 bending cycles). This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability, providing a promising pathway for next-generation flexible energy storage devices.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-025-01700-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-025-01700-9","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
Fiber-shaped energy storage devices (FSESDs) with exceptional flexibility for wearable power sources should be applied with solid electrolytes over liquid electrolytes due to short circuits and leakage issue during deformation. Among the solid options, polymer electrolytes are particularly preferred due to their robustness and flexibility, although their low ionic conductivity remains a significant challenge. Here, we present a redox polymer electrolyte (HT_RPE) with 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (HT) as a multi-functional additive. HT acts as a plasticizer that transforms the glassy state into the rubbery state for improved chain mobility and provides distinctive ion conduction pathway by the self-exchange reaction between radical and oxidized species. These synergetic effects lead to high ionic conductivity (73.5 mS cm−1) based on a lower activation energy of 0.13 eV than other redox additives. Moreover, HT_RPE with a pseudocapacitive characteristic by HT enables an outstanding electrochemical performance of the symmetric FSESDs using carbon-based fiber electrodes (energy density of 25.4 W h kg−1 at a power density of 25,000 W kg−1) without typical active materials, along with excellent stability (capacitance retention of 91.2% after 8,000 bending cycles). This work highlights a versatile HT_RPE that utilizes the unique functionality of HT for both the high ionic conductivity and improved energy storage capability, providing a promising pathway for next-generation flexible energy storage devices.
期刊介绍:
Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand.
Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields.
Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.