Polyesters derived from 4,4’-dixydroxybenzophenone: syntheses and properties

IF 2.4 3区 化学 Q3 POLYMER SCIENCE
Jisong Qin, Zhengzai Cheng, Lesly Dasilva Wandji Djouonkep, Mario Gauthier
{"title":"Polyesters derived from 4,4’-dixydroxybenzophenone: syntheses and properties","authors":"Jisong Qin,&nbsp;Zhengzai Cheng,&nbsp;Lesly Dasilva Wandji Djouonkep,&nbsp;Mario Gauthier","doi":"10.1007/s13726-024-01392-9","DOIUrl":null,"url":null,"abstract":"<div><p>To meet polymeric material sustainability requirements of the modern polymer industry, a novel diphenyl-based monomer, dimethyl 2,2’-((carbonylbis(4,1-phenylene))bis(oxy))diacetate (DPBD), was prepared from 4,4'-dixydroxybenzophenone, derived from potentially bio-sourced 4-hydroxybenzoic acid. The diester monomer DPBD was polymerized with either 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, or 1,4-cyclohexanedimethanol as aliphatic diols to afford aliphatic/aromatic copolyesters (P<sub>1</sub>–P<sub>4</sub>). The copolyesters were characterized using gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing, as well as biodegradation and earthworm acute toxicity assays. The effects of diol carbon chain length and cyclic diol monomers on polyester properties were investigated. From the results, the weight-average molecular weight (M<sub>w</sub>) of the polyesters ranged from 37.5 to 45.5 kg/mol, glass transition temperature (T<sub>g</sub>) ranged from 65 to 78 °C, initial thermal decomposition temperature (T<sub>d,5%</sub>) varied from 324 to 353 °C, yield strength varied from 45 to 56 MPa, and elongation-at-break ranged from 215 to 290%. The properties can be adjusted by tuning the monomer structure, which induced a degradation rate of up to 4.6% after incubation in soil for 30 weeks, in contrast to poly(ethylene terephthalate) (PET) which showed no degradation under the same conditions. The ecotoxicity of the polyesters to earthworms remained low, even at high concentration polymer concentration tested (4000 mg/kg soil), the survival rate was above 82%. Therefore, polyesters offer a good combination of structure-to-property serving as potential alternatives to petroleum-based materials.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":601,"journal":{"name":"Iranian Polymer Journal","volume":"34 4","pages":"485 - 497"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s13726-024-01392-9","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

To meet polymeric material sustainability requirements of the modern polymer industry, a novel diphenyl-based monomer, dimethyl 2,2’-((carbonylbis(4,1-phenylene))bis(oxy))diacetate (DPBD), was prepared from 4,4'-dixydroxybenzophenone, derived from potentially bio-sourced 4-hydroxybenzoic acid. The diester monomer DPBD was polymerized with either 1,4-butanediol, 1,6-hexanediol, 1,8-octanediol, or 1,4-cyclohexanedimethanol as aliphatic diols to afford aliphatic/aromatic copolyesters (P1–P4). The copolyesters were characterized using gel permeation chromatography, differential scanning calorimetry, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing, as well as biodegradation and earthworm acute toxicity assays. The effects of diol carbon chain length and cyclic diol monomers on polyester properties were investigated. From the results, the weight-average molecular weight (Mw) of the polyesters ranged from 37.5 to 45.5 kg/mol, glass transition temperature (Tg) ranged from 65 to 78 °C, initial thermal decomposition temperature (Td,5%) varied from 324 to 353 °C, yield strength varied from 45 to 56 MPa, and elongation-at-break ranged from 215 to 290%. The properties can be adjusted by tuning the monomer structure, which induced a degradation rate of up to 4.6% after incubation in soil for 30 weeks, in contrast to poly(ethylene terephthalate) (PET) which showed no degradation under the same conditions. The ecotoxicity of the polyesters to earthworms remained low, even at high concentration polymer concentration tested (4000 mg/kg soil), the survival rate was above 82%. Therefore, polyesters offer a good combination of structure-to-property serving as potential alternatives to petroleum-based materials.

Graphical abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian Polymer Journal
Iranian Polymer Journal 化学-高分子科学
CiteScore
4.90
自引率
9.70%
发文量
107
审稿时长
2.8 months
期刊介绍: Iranian Polymer Journal, a monthly peer-reviewed international journal, provides a continuous forum for the dissemination of the original research and latest advances made in science and technology of polymers, covering diverse areas of polymer synthesis, characterization, polymer physics, rubber, plastics and composites, processing and engineering, biopolymers, drug delivery systems and natural polymers to meet specific applications. Also contributions from nano-related fields are regarded especially important for its versatility in modern scientific development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信