Asymmetrically Split-Cylinder Resonator With Air Gap for Measuring the Complex Permittivity of Film on a Substrate

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Chengyong Yu;Xuan Ran;Yunpeng Zhang;Zhuoyue Zhang;Chong Gao;Jiawei Long;Xue Niu;Hu Zheng;En Li
{"title":"Asymmetrically Split-Cylinder Resonator With Air Gap for Measuring the Complex Permittivity of Film on a Substrate","authors":"Chengyong Yu;Xuan Ran;Yunpeng Zhang;Zhuoyue Zhang;Chong Gao;Jiawei Long;Xue Niu;Hu Zheng;En Li","doi":"10.1109/LMWT.2024.3522129","DOIUrl":null,"url":null,"abstract":"In this letter, a simple but very effective theoretical analysis is presented for the first time to model an asymmetric split-cylinder resonator (SCR) formed by the loading of multilayer samples. The fringing field effects at the flange can be effectively corrected by equating the multilayer structure to a single one, thus allowing the permittivity of the thin film on a substrate in the asymmetric SCR to be accurately extracted using a simple model of a multilayer dielectric-filled closed cavity. The validity of the proposed method has been investigated both numerically and experimentally at 10–20 GHz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 3","pages":"290-293"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818986/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

In this letter, a simple but very effective theoretical analysis is presented for the first time to model an asymmetric split-cylinder resonator (SCR) formed by the loading of multilayer samples. The fringing field effects at the flange can be effectively corrected by equating the multilayer structure to a single one, thus allowing the permittivity of the thin film on a substrate in the asymmetric SCR to be accurately extracted using a simple model of a multilayer dielectric-filled closed cavity. The validity of the proposed method has been investigated both numerically and experimentally at 10–20 GHz.
用于测量衬底上薄膜复介电常数的气隙非对称裂柱谐振器
本文首次对多层试样加载形成的非对称裂柱谐振腔进行了简单而有效的理论分析。通过将多层结构等效为单层结构,可以有效地修正法兰处的边缘场效应,从而可以使用多层介质填充封闭腔的简单模型准确提取非对称可控硅衬底上薄膜的介电常数。在10-20 GHz频段对该方法的有效性进行了数值和实验研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信