Chengyong Yu;Xuan Ran;Yunpeng Zhang;Zhuoyue Zhang;Chong Gao;Jiawei Long;Xue Niu;Hu Zheng;En Li
{"title":"Asymmetrically Split-Cylinder Resonator With Air Gap for Measuring the Complex Permittivity of Film on a Substrate","authors":"Chengyong Yu;Xuan Ran;Yunpeng Zhang;Zhuoyue Zhang;Chong Gao;Jiawei Long;Xue Niu;Hu Zheng;En Li","doi":"10.1109/LMWT.2024.3522129","DOIUrl":null,"url":null,"abstract":"In this letter, a simple but very effective theoretical analysis is presented for the first time to model an asymmetric split-cylinder resonator (SCR) formed by the loading of multilayer samples. The fringing field effects at the flange can be effectively corrected by equating the multilayer structure to a single one, thus allowing the permittivity of the thin film on a substrate in the asymmetric SCR to be accurately extracted using a simple model of a multilayer dielectric-filled closed cavity. The validity of the proposed method has been investigated both numerically and experimentally at 10–20 GHz.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 3","pages":"290-293"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10818986/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this letter, a simple but very effective theoretical analysis is presented for the first time to model an asymmetric split-cylinder resonator (SCR) formed by the loading of multilayer samples. The fringing field effects at the flange can be effectively corrected by equating the multilayer structure to a single one, thus allowing the permittivity of the thin film on a substrate in the asymmetric SCR to be accurately extracted using a simple model of a multilayer dielectric-filled closed cavity. The validity of the proposed method has been investigated both numerically and experimentally at 10–20 GHz.