Rampa: Robotic Augmented Reality for Machine Programming by DemonstrAtion

IF 4.6 2区 计算机科学 Q2 ROBOTICS
Fatih Dogangun;Serdar Bahar;Yigit Yildirim;Bora Toprak Temir;Emre Ugur;Mustafa Doga Dogan
{"title":"Rampa: Robotic Augmented Reality for Machine Programming by DemonstrAtion","authors":"Fatih Dogangun;Serdar Bahar;Yigit Yildirim;Bora Toprak Temir;Emre Ugur;Mustafa Doga Dogan","doi":"10.1109/LRA.2025.3546109","DOIUrl":null,"url":null,"abstract":"This letter introduces Robotic Augmented Reality for Machine Programming by Demonstration (<sc>Rampa</small>), the first ML-integrated, XR-driven end-to-end robotic system, allowing training and deployment of ML models such as ProMPs on the fly, and utilizing the capabilities of state-of-the-art and commercially available AR headsets, e.g., <italic>Meta Quest 3</i>, to facilitate the application of Programming by Demonstration (PbD) approaches on industrial robotic arms, e.g., <italic>Universal Robots UR10</i>. Our approach enables <italic>in-situ</i> data recording, visualization, and fine-tuning of skill demonstrations directly within the user's physical environment. <sc>Rampa</small> addresses critical challenges of PbD, such as safety concerns, programming barriers, and the inefficiency of collecting demonstrations on the actual hardware. The performance of our system is evaluated against the traditional method of kinesthetic control in teaching three different robotic manipulation tasks and analyzed with quantitative metrics, measuring task performance and completion time, trajectory smoothness, system usability, user experience, and task load using standardized surveys. Our findings indicate a substantial advancement in how robotic tasks are taught and refined, promising improvements in operational safety, efficiency, and user engagement in robotic programming.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 4","pages":"3795-3802"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10904309/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter introduces Robotic Augmented Reality for Machine Programming by Demonstration (Rampa), the first ML-integrated, XR-driven end-to-end robotic system, allowing training and deployment of ML models such as ProMPs on the fly, and utilizing the capabilities of state-of-the-art and commercially available AR headsets, e.g., Meta Quest 3, to facilitate the application of Programming by Demonstration (PbD) approaches on industrial robotic arms, e.g., Universal Robots UR10. Our approach enables in-situ data recording, visualization, and fine-tuning of skill demonstrations directly within the user's physical environment. Rampa addresses critical challenges of PbD, such as safety concerns, programming barriers, and the inefficiency of collecting demonstrations on the actual hardware. The performance of our system is evaluated against the traditional method of kinesthetic control in teaching three different robotic manipulation tasks and analyzed with quantitative metrics, measuring task performance and completion time, trajectory smoothness, system usability, user experience, and task load using standardized surveys. Our findings indicate a substantial advancement in how robotic tasks are taught and refined, promising improvements in operational safety, efficiency, and user engagement in robotic programming.
求助全文
约1分钟内获得全文 求助全文
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信