Two-Stage Digital Predistortion With Neural-Network-Assisted Virtual Beamforming for Interchannel Effects in MIMO Systems

0 ENGINEERING, ELECTRICAL & ELECTRONIC
Xin Hu;Yurong Yao;Boyan Li;Quanhao Yao;Zongyu Chang;Weidong Wang;Fadhel M. Ghannouchi
{"title":"Two-Stage Digital Predistortion With Neural-Network-Assisted Virtual Beamforming for Interchannel Effects in MIMO Systems","authors":"Xin Hu;Yurong Yao;Boyan Li;Quanhao Yao;Zongyu Chang;Weidong Wang;Fadhel M. Ghannouchi","doi":"10.1109/LMWT.2025.3526625","DOIUrl":null,"url":null,"abstract":"Existing method to linearize PAs in multiple-input multiple-output (MIMO) systems either rely on deploying over-the-air (OTA) antenna arrays in the far-field or neglect the effects of interchannel. To address these issues, this letter proposes a two-stage digital predistortion (DPD) approach with neural-network (NN)-assisted virtual beamforming (VB) for interchannel effects in MIMO systems. The main DPD compensates for distortion of PAs, while the sub-DPD compensates for distortion of the interchannel effects. An experimental test was performed using a uniform linear array (ULA) at 3.5 GHz. Based on experimental results, the proposed method achieves up to 5.37-dBc improvement in adjacent channel power ratio (ACPR), closely replicates the linearization performance of OTA, and eliminates the need for remote OTA deployment.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 3","pages":"346-349"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843818/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Existing method to linearize PAs in multiple-input multiple-output (MIMO) systems either rely on deploying over-the-air (OTA) antenna arrays in the far-field or neglect the effects of interchannel. To address these issues, this letter proposes a two-stage digital predistortion (DPD) approach with neural-network (NN)-assisted virtual beamforming (VB) for interchannel effects in MIMO systems. The main DPD compensates for distortion of PAs, while the sub-DPD compensates for distortion of the interchannel effects. An experimental test was performed using a uniform linear array (ULA) at 3.5 GHz. Based on experimental results, the proposed method achieves up to 5.37-dBc improvement in adjacent channel power ratio (ACPR), closely replicates the linearization performance of OTA, and eliminates the need for remote OTA deployment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信