Xin Hu;Yurong Yao;Boyan Li;Quanhao Yao;Zongyu Chang;Weidong Wang;Fadhel M. Ghannouchi
{"title":"Two-Stage Digital Predistortion With Neural-Network-Assisted Virtual Beamforming for Interchannel Effects in MIMO Systems","authors":"Xin Hu;Yurong Yao;Boyan Li;Quanhao Yao;Zongyu Chang;Weidong Wang;Fadhel M. Ghannouchi","doi":"10.1109/LMWT.2025.3526625","DOIUrl":null,"url":null,"abstract":"Existing method to linearize PAs in multiple-input multiple-output (MIMO) systems either rely on deploying over-the-air (OTA) antenna arrays in the far-field or neglect the effects of interchannel. To address these issues, this letter proposes a two-stage digital predistortion (DPD) approach with neural-network (NN)-assisted virtual beamforming (VB) for interchannel effects in MIMO systems. The main DPD compensates for distortion of PAs, while the sub-DPD compensates for distortion of the interchannel effects. An experimental test was performed using a uniform linear array (ULA) at 3.5 GHz. Based on experimental results, the proposed method achieves up to 5.37-dBc improvement in adjacent channel power ratio (ACPR), closely replicates the linearization performance of OTA, and eliminates the need for remote OTA deployment.","PeriodicalId":73297,"journal":{"name":"IEEE microwave and wireless technology letters","volume":"35 3","pages":"346-349"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE microwave and wireless technology letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843818/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Existing method to linearize PAs in multiple-input multiple-output (MIMO) systems either rely on deploying over-the-air (OTA) antenna arrays in the far-field or neglect the effects of interchannel. To address these issues, this letter proposes a two-stage digital predistortion (DPD) approach with neural-network (NN)-assisted virtual beamforming (VB) for interchannel effects in MIMO systems. The main DPD compensates for distortion of PAs, while the sub-DPD compensates for distortion of the interchannel effects. An experimental test was performed using a uniform linear array (ULA) at 3.5 GHz. Based on experimental results, the proposed method achieves up to 5.37-dBc improvement in adjacent channel power ratio (ACPR), closely replicates the linearization performance of OTA, and eliminates the need for remote OTA deployment.