UV-induced plasma welding and interface customization strategy of cellulose nanofiber/silver nanowire composite electrode for advanced flexible photoelectric applications

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Bingyang Liu , Pengfei Li , Jinsong Zeng , Jinpeng Li , Kefu Chen
{"title":"UV-induced plasma welding and interface customization strategy of cellulose nanofiber/silver nanowire composite electrode for advanced flexible photoelectric applications","authors":"Bingyang Liu ,&nbsp;Pengfei Li ,&nbsp;Jinsong Zeng ,&nbsp;Jinpeng Li ,&nbsp;Kefu Chen","doi":"10.1016/j.carbpol.2025.123479","DOIUrl":null,"url":null,"abstract":"<div><div>Significant advancements in flexible photoelectric devices have been achieved through extensive research on flexible transparent conductive electrodes (FTCEs) based on silver nanowires (AgNWs). However, two key challenges that need to be addressed are the high contact resistance of AgNWs and poor interface adhesion between AgNWs and the flexible substrate. In this study, we present a composite electrode comprising polydopamine-grafted cellulose nanofibers (PDA-TCNF) and AgNWs, fabricated through an interface customization strategy combined with UV-induced plasma welding. To enhance interfacial crosslinking, <em>N</em>, <em>N</em>-bis(acryloyl)cysteamine (BACA) was introduced as a surface adsorbate for AgNWs. The composite electrode exhibited rapid plasma welding of AgNWs under low-intensity UV irradiation. The optimized PDA-TCNF/AgNW-S/3 electrode demonstrated a sheet resistance of 7.26 Ω sq.<sup>−1</sup> with a remarkable light transmittance of 85.7 %. The interface customization strategy facilitated enhanced diffusion of silver atoms at AgNW junctions during UV-induced heating, thereby strengthening their welding capability. These electrodes serve as high-performance FTCEs for electroluminescent devices and transparent electric heaters. Our work proposes a simple method to fabricate superior FTCEs by integrating nanocellulose with AgNWs, offering a promising environmentally friendly material for flexible optoelectronic applications.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"357 ","pages":"Article 123479"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861725002607","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Significant advancements in flexible photoelectric devices have been achieved through extensive research on flexible transparent conductive electrodes (FTCEs) based on silver nanowires (AgNWs). However, two key challenges that need to be addressed are the high contact resistance of AgNWs and poor interface adhesion between AgNWs and the flexible substrate. In this study, we present a composite electrode comprising polydopamine-grafted cellulose nanofibers (PDA-TCNF) and AgNWs, fabricated through an interface customization strategy combined with UV-induced plasma welding. To enhance interfacial crosslinking, N, N-bis(acryloyl)cysteamine (BACA) was introduced as a surface adsorbate for AgNWs. The composite electrode exhibited rapid plasma welding of AgNWs under low-intensity UV irradiation. The optimized PDA-TCNF/AgNW-S/3 electrode demonstrated a sheet resistance of 7.26 Ω sq.−1 with a remarkable light transmittance of 85.7 %. The interface customization strategy facilitated enhanced diffusion of silver atoms at AgNW junctions during UV-induced heating, thereby strengthening their welding capability. These electrodes serve as high-performance FTCEs for electroluminescent devices and transparent electric heaters. Our work proposes a simple method to fabricate superior FTCEs by integrating nanocellulose with AgNWs, offering a promising environmentally friendly material for flexible optoelectronic applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信