Research on the enhancement effect of ultrasonic field combined with monoclinic FeS on arsenic removal behavior

IF 3.8 3区 工程技术 Q3 ENERGY & FUELS
Baoxin Liu , Qingfeng Dong , Jing Li , Zhanqing Lu , Guang Fu , Junchang Liu , Te Zhang
{"title":"Research on the enhancement effect of ultrasonic field combined with monoclinic FeS on arsenic removal behavior","authors":"Baoxin Liu ,&nbsp;Qingfeng Dong ,&nbsp;Jing Li ,&nbsp;Zhanqing Lu ,&nbsp;Guang Fu ,&nbsp;Junchang Liu ,&nbsp;Te Zhang","doi":"10.1016/j.cep.2025.110266","DOIUrl":null,"url":null,"abstract":"<div><div>Arsenic is a toxic element in industrial wastewater. The removal of arsenic by sulfide method has been a prominent research topic in the academic community. In this paper, arsenic was removed from arsenic-containing wastewater by ultrasound intensification combined with monoclinic FeS. This method avoids the common problems of H<sub>2</sub>S gas spillage and inefficiency in the sulfide method, and has the advantages of being clean and efficient. The effects of S/As molar ratio, initial temperature, reaction time and ultrasonic power on arsenic removal were studied. Under the optimum condition, the arsenic concentration was reduced from 1889 mg/L to 0.32 mg/L, and the arsenic removal rate reached 99.98 %. The precipitation after arsenic removal was characterized by X-ray diffraction (XRD), Scanning electron microscope-energy dispersive spectrometry (SEM-EDS), X-ray fluorescence spectrum analysis method (XRF) and X-ray photoelectron spectroscopy (XPS) to analyze the precipitation phase, surface morphology, element content and chemical composition. A high-speed camera was used to observe the effect of ultrasound on the kinematic behavior of monoclinic FeS.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"212 ","pages":"Article 110266"},"PeriodicalIF":3.8000,"publicationDate":"2025-03-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001151","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic is a toxic element in industrial wastewater. The removal of arsenic by sulfide method has been a prominent research topic in the academic community. In this paper, arsenic was removed from arsenic-containing wastewater by ultrasound intensification combined with monoclinic FeS. This method avoids the common problems of H2S gas spillage and inefficiency in the sulfide method, and has the advantages of being clean and efficient. The effects of S/As molar ratio, initial temperature, reaction time and ultrasonic power on arsenic removal were studied. Under the optimum condition, the arsenic concentration was reduced from 1889 mg/L to 0.32 mg/L, and the arsenic removal rate reached 99.98 %. The precipitation after arsenic removal was characterized by X-ray diffraction (XRD), Scanning electron microscope-energy dispersive spectrometry (SEM-EDS), X-ray fluorescence spectrum analysis method (XRF) and X-ray photoelectron spectroscopy (XPS) to analyze the precipitation phase, surface morphology, element content and chemical composition. A high-speed camera was used to observe the effect of ultrasound on the kinematic behavior of monoclinic FeS.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信