Hongzhi Wang, Xiangcheng Shen, Weiguo Zhang, Suwei Yao
{"title":"Amorphous/Crystalline NiFeS@Ni0.85Se supported on nickel foam as bifunctional electrocatalysts for efficient water splitting","authors":"Hongzhi Wang, Xiangcheng Shen, Weiguo Zhang, Suwei Yao","doi":"10.1016/j.jssc.2025.125301","DOIUrl":null,"url":null,"abstract":"<div><div>The synthesis of low-cost transition metal bifunctional electrocatalysts that can replace noble metals is crucial for realizing high efficiency hydrogen production from industrial water splitting. Herein, a novel binder-free amorphous/crystalline NiFeS@Ni<sub>0.85</sub>Se bifunctional electrocatalyst material has been fabricated on nickel foam (NF) via a straightforward two-step electrodeposition method. The electrode features a unique structure in which NiFeS nanosheets of uniform size grow on Ni<sub>0.85</sub>Se microspheres, thus providing more active sites. It exhibits a minimal overpotential of 63 mV at 10 mA cm<sup>−2</sup> for hydrogen evolution reaction (HER) and 311 mV at 100 mA cm<sup>−2</sup> for oxygen evolution reaction (OER). Impressively, when assembled into an electrolytic cell, the electrocatalyst can reach 10 mA cm<sup>−2</sup> at just 1.51 V and remains stable for 220 h. Additionally, at 1.68 V, the catalyst reaches 50 mA cm<sup>−2</sup> and maintains stable operation for 140 h, demonstrating outstanding water splitting potential. This paper presents a composite material that combines the crystalline and amorphous states, allowing them to complement each other and jointly promote catalytic performance.</div></div>","PeriodicalId":378,"journal":{"name":"Journal of Solid State Chemistry","volume":"347 ","pages":"Article 125301"},"PeriodicalIF":3.2000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022459625001240","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of low-cost transition metal bifunctional electrocatalysts that can replace noble metals is crucial for realizing high efficiency hydrogen production from industrial water splitting. Herein, a novel binder-free amorphous/crystalline NiFeS@Ni0.85Se bifunctional electrocatalyst material has been fabricated on nickel foam (NF) via a straightforward two-step electrodeposition method. The electrode features a unique structure in which NiFeS nanosheets of uniform size grow on Ni0.85Se microspheres, thus providing more active sites. It exhibits a minimal overpotential of 63 mV at 10 mA cm−2 for hydrogen evolution reaction (HER) and 311 mV at 100 mA cm−2 for oxygen evolution reaction (OER). Impressively, when assembled into an electrolytic cell, the electrocatalyst can reach 10 mA cm−2 at just 1.51 V and remains stable for 220 h. Additionally, at 1.68 V, the catalyst reaches 50 mA cm−2 and maintains stable operation for 140 h, demonstrating outstanding water splitting potential. This paper presents a composite material that combines the crystalline and amorphous states, allowing them to complement each other and jointly promote catalytic performance.
期刊介绍:
Covering major developments in the field of solid state chemistry and related areas such as ceramics and amorphous materials, the Journal of Solid State Chemistry features studies of chemical, structural, thermodynamic, electronic, magnetic, and optical properties and processes in solids.