Niamh Ahern , Theresa Boeck , Arianna Ressa , Laura Nyhan , Elke K. Arendt , Rosa Sanchez , Patrick O'Riordan , Steffen Münch , Aylin W. Sahin
{"title":"Decolourised barley and rice protein isolate – Enhanced techno-functional and sensory properties","authors":"Niamh Ahern , Theresa Boeck , Arianna Ressa , Laura Nyhan , Elke K. Arendt , Rosa Sanchez , Patrick O'Riordan , Steffen Münch , Aylin W. Sahin","doi":"10.1016/j.ifset.2025.103999","DOIUrl":null,"url":null,"abstract":"<div><div>Plant-based protein is increasingly preferred over animal-based protein from an environmental and ethical standpoint. EverPro®, a barley and rice protein isolate (BRPI), upcycled from brewers spent grain is a commercially available novel plant protein. The aim of this study was to compare two BRPIs, EverPro® Dark Fraction (EDF) and EverPro® Light Fraction (ELF), which underwent an additional decolourisation process. Both ingredients showed high solubility values over a range of pH values which were found to be linked with their zeta potential. Other techno-functional properties were also analysed, where only slight differences between ingredients were found. Key differences between EDF and ELF were colour and sensory characteristics. ELF showed a significantly higher L* values (beige/sandy) compared to EDF (dark brown). Moreover, a major decrease in aroma and metabolite compounds was observed for ELF. The sensory analysis revealed ELF was perceived significantly lower in bitter, burnt/roasty descriptors in comparison to EDF. These findings correlated with a change in tribology measurements, specifically, an increase in lubrication of ELF solution compared to EDF. The increase in lubrication resulted in a higher viscosity perception by the panellists. Overall, these findings highlight the extended potential of EverPro® with enhanced physical properties for application in a wider range of food and beverage systems.</div></div>","PeriodicalId":329,"journal":{"name":"Innovative Food Science & Emerging Technologies","volume":"102 ","pages":"Article 103999"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovative Food Science & Emerging Technologies","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1466856425000839","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-based protein is increasingly preferred over animal-based protein from an environmental and ethical standpoint. EverPro®, a barley and rice protein isolate (BRPI), upcycled from brewers spent grain is a commercially available novel plant protein. The aim of this study was to compare two BRPIs, EverPro® Dark Fraction (EDF) and EverPro® Light Fraction (ELF), which underwent an additional decolourisation process. Both ingredients showed high solubility values over a range of pH values which were found to be linked with their zeta potential. Other techno-functional properties were also analysed, where only slight differences between ingredients were found. Key differences between EDF and ELF were colour and sensory characteristics. ELF showed a significantly higher L* values (beige/sandy) compared to EDF (dark brown). Moreover, a major decrease in aroma and metabolite compounds was observed for ELF. The sensory analysis revealed ELF was perceived significantly lower in bitter, burnt/roasty descriptors in comparison to EDF. These findings correlated with a change in tribology measurements, specifically, an increase in lubrication of ELF solution compared to EDF. The increase in lubrication resulted in a higher viscosity perception by the panellists. Overall, these findings highlight the extended potential of EverPro® with enhanced physical properties for application in a wider range of food and beverage systems.
期刊介绍:
Innovative Food Science and Emerging Technologies (IFSET) aims to provide the highest quality original contributions and few, mainly upon invitation, reviews on and highly innovative developments in food science and emerging food process technologies. The significance of the results either for the science community or for industrial R&D groups must be specified. Papers submitted must be of highest scientific quality and only those advancing current scientific knowledge and understanding or with technical relevance will be considered.