Weihong Lin , Zhaoliang Chen , Yuhong Chen , Shiping Wang
{"title":"Heterogeneous Graph Neural Network with Adaptive Relation Reconstruction","authors":"Weihong Lin , Zhaoliang Chen , Yuhong Chen , Shiping Wang","doi":"10.1016/j.neunet.2025.107313","DOIUrl":null,"url":null,"abstract":"<div><div>Topological structures of real-world graphs often exhibit heterogeneity involving diverse nodes and relation types. In recent years, heterogeneous graph learning methods utilizing meta-paths to capture composite relations and guide neighbor selection have garnered considerable attention. However, meta-path based approaches may establish connections between nodes of different categories while overlooking relations between nodes of the same category, decreasing the quality of node embeddings. In light of this, this paper proposes a Heterogeneous Graph Neural Network with Adaptive Relation Reconstruction (HGNN-AR<sup>2</sup>) that adaptively adjusts the relations to alleviate connection deficiencies and heteromorphic issues. HGNN-AR<sup>2</sup> is grounded on distinct connections derived from multiple meta-paths. By examining the homomorphic correlations of latent features from each meta-path, we reshape the cross-node connections to explore the pertinent latent relations. Through the relation reconstruction, we unveil unique connections reflected by each meta-path and incorporate them into graph convolutional networks for more comprehensive representations. The proposed model is evaluated on various benchmark heterogeneous graph datasets, demonstrating superior performance compared to state-of-the-art competitors.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"187 ","pages":"Article 107313"},"PeriodicalIF":6.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001923","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Topological structures of real-world graphs often exhibit heterogeneity involving diverse nodes and relation types. In recent years, heterogeneous graph learning methods utilizing meta-paths to capture composite relations and guide neighbor selection have garnered considerable attention. However, meta-path based approaches may establish connections between nodes of different categories while overlooking relations between nodes of the same category, decreasing the quality of node embeddings. In light of this, this paper proposes a Heterogeneous Graph Neural Network with Adaptive Relation Reconstruction (HGNN-AR2) that adaptively adjusts the relations to alleviate connection deficiencies and heteromorphic issues. HGNN-AR2 is grounded on distinct connections derived from multiple meta-paths. By examining the homomorphic correlations of latent features from each meta-path, we reshape the cross-node connections to explore the pertinent latent relations. Through the relation reconstruction, we unveil unique connections reflected by each meta-path and incorporate them into graph convolutional networks for more comprehensive representations. The proposed model is evaluated on various benchmark heterogeneous graph datasets, demonstrating superior performance compared to state-of-the-art competitors.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.