Enhancing electrochemo-mechanical properties of graphite-silicon anode in all-solid-state batteries via solvent-induced polar interactions in nitrile binders

IF 13.1 1区 化学 Q1 Energy
Jaecheol Choi , Cheol Bak , Ju Young Kim , Dong Ok Shin , Seok Hun Kang , Yong Min Lee , Young-Gi Lee
{"title":"Enhancing electrochemo-mechanical properties of graphite-silicon anode in all-solid-state batteries via solvent-induced polar interactions in nitrile binders","authors":"Jaecheol Choi ,&nbsp;Cheol Bak ,&nbsp;Ju Young Kim ,&nbsp;Dong Ok Shin ,&nbsp;Seok Hun Kang ,&nbsp;Yong Min Lee ,&nbsp;Young-Gi Lee","doi":"10.1016/j.jechem.2025.02.012","DOIUrl":null,"url":null,"abstract":"<div><div>All-solid-state batteries (ASSBs) with sulfide-type solid electrolytes (SEs) are gaining significant attention due to their potential for the enhanced safety and energy density. In the slurry-coating process for ASSBs, nitrile rubber (NBR) is primarily used as a binder due to its moderate solubility in non-polar solvents, which exhibites minimal chemical reactivity with sulfide SEs. However, the NBR binder, composed of butadiene and acrylonitrile units with differing polarities, exhibits different chemical compatibility depending on the subtle differences in polarity of solvents. Herein, we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs. Anisole is found to activate the acrylonitrile units, inducing an elongated polymer chain configuration in the binder solution, which gives an opportunity to strongly interact with the solid components of the electrode and the current collector. Consequently, selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode, allowing ASSBs to operate at a lower stacking pressure of 16 MPa. This approach achieves an initial capacity of 480 mAh g<sup>−1</sup>, significantly higher than the 390 mAh g<sup>−1</sup> achieved with the NBR/toluene binder that has less chemical compatibility. Furthermore, internal stress variations during battery operation are monitored, revealing that the enhanced mechanical properties, achieved through acrylonitrile activation, effectively mitigate internal stress in the graphite/silicon composite anode.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"105 ","pages":"Pages 514-524"},"PeriodicalIF":13.1000,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625001512","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

All-solid-state batteries (ASSBs) with sulfide-type solid electrolytes (SEs) are gaining significant attention due to their potential for the enhanced safety and energy density. In the slurry-coating process for ASSBs, nitrile rubber (NBR) is primarily used as a binder due to its moderate solubility in non-polar solvents, which exhibites minimal chemical reactivity with sulfide SEs. However, the NBR binder, composed of butadiene and acrylonitrile units with differing polarities, exhibits different chemical compatibility depending on the subtle differences in polarity of solvents. Herein, we systematically demonstrate how the chemical compatibility of solvents with the NBR binder influences the performance of ASSBs. Anisole is found to activate the acrylonitrile units, inducing an elongated polymer chain configuration in the binder solution, which gives an opportunity to strongly interact with the solid components of the electrode and the current collector. Consequently, selecting anisole as a solvent for the NBR binder enables the fabrication of a mechanically robust graphite-silicon anode, allowing ASSBs to operate at a lower stacking pressure of 16 MPa. This approach achieves an initial capacity of 480 mAh g−1, significantly higher than the 390 mAh g−1 achieved with the NBR/toluene binder that has less chemical compatibility. Furthermore, internal stress variations during battery operation are monitored, revealing that the enhanced mechanical properties, achieved through acrylonitrile activation, effectively mitigate internal stress in the graphite/silicon composite anode.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信