Unveiling the contact electrification of triboelectric fibers by exploring their unique micro- and macroscale structural properties

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Renwei Cheng , Chuanhui Wei , Chuan Ning , Tianmei Lv , Xiao Peng , Zhong Lin Wang , Kai Dong
{"title":"Unveiling the contact electrification of triboelectric fibers by exploring their unique micro- and macroscale structural properties","authors":"Renwei Cheng ,&nbsp;Chuanhui Wei ,&nbsp;Chuan Ning ,&nbsp;Tianmei Lv ,&nbsp;Xiao Peng ,&nbsp;Zhong Lin Wang ,&nbsp;Kai Dong","doi":"10.1016/j.mattod.2025.01.013","DOIUrl":null,"url":null,"abstract":"<div><div>The emerging triboelectric fibers or textiles have recently attracted widespread attention due to their unique wearable energy supply and self-powered sensing functions. However, the unique micro- and macrostructural effects of triboelectric fibers on contact-electrificaion (CE) have not been systematically studied, which result in the lower charge output compared to conventional film structure. Here, in order to provide theoretical guidance for designing high-performance triboelectric fibers with optimized structural designs, a systematic experimental measurement and theoretical analysis method is developed to explore the influence laws and potential mechanisms of the surface microstructural defects and overall macrostructural compositions of triboelectric fibers on their CE behaviors. It can be found that the surface microstructure defects contribute to increasing the total charge transfer, due to the increase in effective interface contact area. In addition, triboelectric fibers with core–shell coaxial structure prepared by uniform coating method have higher electrical output performance, which can ensure maximum contact between the conductive layer and the dielectric layer. This work provides a new research paradigm for studying the CE behavior and quantifying surface charges of complex structures, and suggests a multiscale structural design strategy for high-performance triboelectric fibers.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"83 ","pages":"Pages 295-306"},"PeriodicalIF":21.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702125000252","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The emerging triboelectric fibers or textiles have recently attracted widespread attention due to their unique wearable energy supply and self-powered sensing functions. However, the unique micro- and macrostructural effects of triboelectric fibers on contact-electrificaion (CE) have not been systematically studied, which result in the lower charge output compared to conventional film structure. Here, in order to provide theoretical guidance for designing high-performance triboelectric fibers with optimized structural designs, a systematic experimental measurement and theoretical analysis method is developed to explore the influence laws and potential mechanisms of the surface microstructural defects and overall macrostructural compositions of triboelectric fibers on their CE behaviors. It can be found that the surface microstructure defects contribute to increasing the total charge transfer, due to the increase in effective interface contact area. In addition, triboelectric fibers with core–shell coaxial structure prepared by uniform coating method have higher electrical output performance, which can ensure maximum contact between the conductive layer and the dielectric layer. This work provides a new research paradigm for studying the CE behavior and quantifying surface charges of complex structures, and suggests a multiscale structural design strategy for high-performance triboelectric fibers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信