East Asian dust storm in March 2021: Perspective views from ground observation, satellite measurement and numerical simulation

IF 4.2 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Yi-Bo Xue , Xiao-Xiao Zhang , Jia-Qiang Lei , Sheng-Yu Li , Lian-You Liu , Zi-Fa Wang , Wen-Jun Tian , Xiao Tang , Xue-Shun Chen
{"title":"East Asian dust storm in March 2021: Perspective views from ground observation, satellite measurement and numerical simulation","authors":"Yi-Bo Xue ,&nbsp;Xiao-Xiao Zhang ,&nbsp;Jia-Qiang Lei ,&nbsp;Sheng-Yu Li ,&nbsp;Lian-You Liu ,&nbsp;Zi-Fa Wang ,&nbsp;Wen-Jun Tian ,&nbsp;Xiao Tang ,&nbsp;Xue-Shun Chen","doi":"10.1016/j.atmosenv.2025.121152","DOIUrl":null,"url":null,"abstract":"<div><div>During March 13–18, 2021, East Asia experienced the strongest dust storm in the last decade. This windblown dust event caused large-scale dispersion of aerosol pollution, and attracted widespread attention due to its severe impacts on land-atmosphere-marine ecosystems. Here we investigated the dust sources, transport, and deposition of this dust storm and its effects on the Asia-Pacific region by using ground observations, satellite remote sensing products, and numerical simulation. The results showed that the potential aeolian dust source was mainly located in the Gobi Desert in southern Mongolia and central Inner Mongolia. This dust storm generated rapid increases in ambient particle concentrations over northern and eastern China, the Korean peninsula, and southwestern Japan. Air quality in 82% of the studied East Asian cities deteriorated noticeably as a result of mineral dust intensification. The ground-based Mie-scattering lidar detected the long-distance dispersion of dust aerosols in the 3–5 km high altitudes over Seoul, Osaka, Tokyo, and Niigata. Approximately 16.1 Tg of floating dust was deposited in the Northwest Pacific Ocean. The intensity of dust deposition in the East China Sea was almost twice that in the Yellow Sea and the Sea of Japan. Satellite data revealed that dust particles transported remotely from the East Asian desert were deposited in the North Pacific, resulting in an evident increase (55%–86%) in regional chlorophyll-a concentrations within a week after this dust storm event. Marine algal blooms developed quickly in response to the joint effects of atmospheric dry or wet deposition and surface-ocean currents. This study quantitatively assessed the potential influences of this strong East Asian dust storm on the atmospheric and marine environment, providing a multi-angle perspective for investigating the dynamic long-range transport of aerosols and its implications for global dust cycles.</div></div>","PeriodicalId":250,"journal":{"name":"Atmospheric Environment","volume":"350 ","pages":"Article 121152"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Environment","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135223102500127X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

During March 13–18, 2021, East Asia experienced the strongest dust storm in the last decade. This windblown dust event caused large-scale dispersion of aerosol pollution, and attracted widespread attention due to its severe impacts on land-atmosphere-marine ecosystems. Here we investigated the dust sources, transport, and deposition of this dust storm and its effects on the Asia-Pacific region by using ground observations, satellite remote sensing products, and numerical simulation. The results showed that the potential aeolian dust source was mainly located in the Gobi Desert in southern Mongolia and central Inner Mongolia. This dust storm generated rapid increases in ambient particle concentrations over northern and eastern China, the Korean peninsula, and southwestern Japan. Air quality in 82% of the studied East Asian cities deteriorated noticeably as a result of mineral dust intensification. The ground-based Mie-scattering lidar detected the long-distance dispersion of dust aerosols in the 3–5 km high altitudes over Seoul, Osaka, Tokyo, and Niigata. Approximately 16.1 Tg of floating dust was deposited in the Northwest Pacific Ocean. The intensity of dust deposition in the East China Sea was almost twice that in the Yellow Sea and the Sea of Japan. Satellite data revealed that dust particles transported remotely from the East Asian desert were deposited in the North Pacific, resulting in an evident increase (55%–86%) in regional chlorophyll-a concentrations within a week after this dust storm event. Marine algal blooms developed quickly in response to the joint effects of atmospheric dry or wet deposition and surface-ocean currents. This study quantitatively assessed the potential influences of this strong East Asian dust storm on the atmospheric and marine environment, providing a multi-angle perspective for investigating the dynamic long-range transport of aerosols and its implications for global dust cycles.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Atmospheric Environment
Atmospheric Environment 环境科学-环境科学
CiteScore
9.40
自引率
8.00%
发文量
458
审稿时长
53 days
期刊介绍: Atmospheric Environment has an open access mirror journal Atmospheric Environment: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. Atmospheric Environment is the international journal for scientists in different disciplines related to atmospheric composition and its impacts. The journal publishes scientific articles with atmospheric relevance of emissions and depositions of gaseous and particulate compounds, chemical processes and physical effects in the atmosphere, as well as impacts of the changing atmospheric composition on human health, air quality, climate change, and ecosystems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信