Minwoo Kim , Jung Jae Park , Sangwoo Hong , Yeongju Jung , Junhyuk Bang , Chulmin Cho , Seung Hwan Ko
{"title":"Monolithically stacked VIA-free liquid metal circuit for stretchable electronics","authors":"Minwoo Kim , Jung Jae Park , Sangwoo Hong , Yeongju Jung , Junhyuk Bang , Chulmin Cho , Seung Hwan Ko","doi":"10.1016/j.mattod.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Researchers are eagerly developing stretchable conductors because they constitute basic building blocks for stretchable electronic devices in the fields of wearable electronics, soft robotics, and human–machine interfaces. Though various stretchable conductors with high stability are being devised, fabricating stretchable stacked circuits with them leads to new challenges. The most critical problem is evoked by vertical interconnection access (<strong>VIA</strong>) structures, which inevitably become stress-concentrated areas when stretched. Consequently, stretchable circuits become much more unstable when manufactured as stacked circuits than single-layered circuits. Here, we demonstrate a monolithically stacked VIA-free stretchable liquid metal circuit that is mechanically one-body-merged and electrically stacked-circuit-designed. The circuit has no vertical structures, which endows extreme electromechanical stability with various features. It is realized by unique combinations of liquid metal conductor and selective surface treatment. The stacked circuit can be elongated over 1,100 % strain, demonstrating negligible difference in stretchability compared to a single-layered circuit. The circuit also possesses various distinctive characteristics of security, choosability, and extendability. As proof, we demonstrate an encryption element, a choosable circuit, an extendable circuit, and other functional circuits. We expect the proposed stacked circuit to give directions to stretchable stacked electronics with various functionalities.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"83 ","pages":"Pages 24-34"},"PeriodicalIF":21.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002505","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers are eagerly developing stretchable conductors because they constitute basic building blocks for stretchable electronic devices in the fields of wearable electronics, soft robotics, and human–machine interfaces. Though various stretchable conductors with high stability are being devised, fabricating stretchable stacked circuits with them leads to new challenges. The most critical problem is evoked by vertical interconnection access (VIA) structures, which inevitably become stress-concentrated areas when stretched. Consequently, stretchable circuits become much more unstable when manufactured as stacked circuits than single-layered circuits. Here, we demonstrate a monolithically stacked VIA-free stretchable liquid metal circuit that is mechanically one-body-merged and electrically stacked-circuit-designed. The circuit has no vertical structures, which endows extreme electromechanical stability with various features. It is realized by unique combinations of liquid metal conductor and selective surface treatment. The stacked circuit can be elongated over 1,100 % strain, demonstrating negligible difference in stretchability compared to a single-layered circuit. The circuit also possesses various distinctive characteristics of security, choosability, and extendability. As proof, we demonstrate an encryption element, a choosable circuit, an extendable circuit, and other functional circuits. We expect the proposed stacked circuit to give directions to stretchable stacked electronics with various functionalities.
期刊介绍:
Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field.
We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.