Impact of emergent vegetation on three-dimensional turbulent flow properties and bed morphology in a partially vegetated channel

IF 3.5 2区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Pritam Kumar, Anurag Sharma
{"title":"Impact of emergent vegetation on three-dimensional turbulent flow properties and bed morphology in a partially vegetated channel","authors":"Pritam Kumar,&nbsp;Anurag Sharma","doi":"10.1016/j.ijsrc.2024.10.006","DOIUrl":null,"url":null,"abstract":"<div><div>The study aimed to explore three-dimensional turbulent flow properties and bed morphology in a partially vegetated channel with sand bed conditions. Presence of flexible vegetation in the river and its interaction with the flow are of great significance in understanding the momentum and mass transport in the flow. Experiments were conducted in a straight, tilting rectangular flume with staggered emergent vegetation covering half of the channel width. The results show that the presence of vegetation diverts streamwise velocity from the vegetated side to the non-vegetated side. The study reveals that the presence of vegetation leads to an increase in turbulent intensity, turbulent kinetic energy, and Reynolds shear stress at the transition area between the vegetated and non-vegetated sides of the channel. This increase is attributed to higher transverse flow and momentum exchange in the transition area between the vegetated and non-vegetated sides. In the vegetated side, the vegetation serves as an obstruction, reducing turbulent intensity, turbulent kinetic energy, and Reynolds shear stress compared to the transition area between the vegetated and non-vegetated sides. This reduction in turbulence supports the stability of bed materials and promotes sediment deposition. The presence of vegetation significantly alters the secondary current in the channel. Scour depth along the non-vegetated side was higher than the vegetated side, mainly because the flow concentrated in the centre and non-vegetated side of the channel. The investigation determines that the existence of vegetation on the vegetated side effectively protects against bed erosion and sediment transport. Understanding the impact of emergent flexible vegetation on flow properties and sediment transport can inform decisions about vegetation layouts in river ecosystems.</div></div>","PeriodicalId":50290,"journal":{"name":"International Journal of Sediment Research","volume":"40 2","pages":"Pages 286-311"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Sediment Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001627924001173","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The study aimed to explore three-dimensional turbulent flow properties and bed morphology in a partially vegetated channel with sand bed conditions. Presence of flexible vegetation in the river and its interaction with the flow are of great significance in understanding the momentum and mass transport in the flow. Experiments were conducted in a straight, tilting rectangular flume with staggered emergent vegetation covering half of the channel width. The results show that the presence of vegetation diverts streamwise velocity from the vegetated side to the non-vegetated side. The study reveals that the presence of vegetation leads to an increase in turbulent intensity, turbulent kinetic energy, and Reynolds shear stress at the transition area between the vegetated and non-vegetated sides of the channel. This increase is attributed to higher transverse flow and momentum exchange in the transition area between the vegetated and non-vegetated sides. In the vegetated side, the vegetation serves as an obstruction, reducing turbulent intensity, turbulent kinetic energy, and Reynolds shear stress compared to the transition area between the vegetated and non-vegetated sides. This reduction in turbulence supports the stability of bed materials and promotes sediment deposition. The presence of vegetation significantly alters the secondary current in the channel. Scour depth along the non-vegetated side was higher than the vegetated side, mainly because the flow concentrated in the centre and non-vegetated side of the channel. The investigation determines that the existence of vegetation on the vegetated side effectively protects against bed erosion and sediment transport. Understanding the impact of emergent flexible vegetation on flow properties and sediment transport can inform decisions about vegetation layouts in river ecosystems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Sediment Research
International Journal of Sediment Research 环境科学-环境科学
CiteScore
6.90
自引率
5.60%
发文量
88
审稿时长
74 days
期刊介绍: International Journal of Sediment Research, the Official Journal of The International Research and Training Center on Erosion and Sedimentation and The World Association for Sedimentation and Erosion Research, publishes scientific and technical papers on all aspects of erosion and sedimentation interpreted in its widest sense. The subject matter is to include not only the mechanics of sediment transport and fluvial processes, but also what is related to geography, geomorphology, soil erosion, watershed management, sedimentology, environmental and ecological impacts of sedimentation, social and economical effects of sedimentation and its assessment, etc. Special attention is paid to engineering problems related to sedimentation and erosion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信