Refining land cover classification and change detection for urban water management using comparative machine learning approach

Q2 Environmental Science
Douraied Guizani , János Tamás , Dávid Pásztor , Attila Nagy
{"title":"Refining land cover classification and change detection for urban water management using comparative machine learning approach","authors":"Douraied Guizani ,&nbsp;János Tamás ,&nbsp;Dávid Pásztor ,&nbsp;Attila Nagy","doi":"10.1016/j.envc.2025.101118","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate land cover (LC) maps are essential for urban water balance modeling, particularly in rapidly urbanizing cities like Debrecen, Hungary, where industrial expansion has intensified since 2019. However, LC classification remains challenging due to limited studies evaluating the optimal combination of classifiers and satellite data. This study builds upon previous research by introducing a comparative analysis of three machine learning classifiers—Support Vector Machine (SVM), Maximum Likelihood Classification (MLC), and Random Forest (RF)—in LC classification using Sentinel-2 and Landsat 8 imagery from 2018, 2020, and 2022.</div><div>Results show that SVM on Sentinel-2 achieved the highest accuracy (F1 score: 0.84 ± 0.11, overall accuracy: 88 ± 2.1 %, kappa: 0.84 ± 0.03) with the lowest total disagreement values (D% = 12.6 in 2020, 13.1 in 2022). Consequently, SVM with Sentinel-2 was selected for LC change detection, employing trajectory analysis to assess urban development dynamics. The quantity gain component accounted for 5 % of the study area, representing net urban expansion, while the exchange component (10 %) indicated bidirectional shifts between developed and non-developed classes. Given Debrecen's rapid industrialization and the lack of a robust LC classification strategy for hydrological applications, this research refines LC change detection methods. It improves water balance calculations by LC type, strengthening the hydrological framework. By demonstrating the value of satellite imagery and GIS in monitoring urbanization, the findings support future urban water balance assessments, sustainable planning, and resource management, providing local authorities with a robust tool to adapt spatial strategies to an evolving landscape.</div></div>","PeriodicalId":34794,"journal":{"name":"Environmental Challenges","volume":"19 ","pages":"Article 101118"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Challenges","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667010025000381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate land cover (LC) maps are essential for urban water balance modeling, particularly in rapidly urbanizing cities like Debrecen, Hungary, where industrial expansion has intensified since 2019. However, LC classification remains challenging due to limited studies evaluating the optimal combination of classifiers and satellite data. This study builds upon previous research by introducing a comparative analysis of three machine learning classifiers—Support Vector Machine (SVM), Maximum Likelihood Classification (MLC), and Random Forest (RF)—in LC classification using Sentinel-2 and Landsat 8 imagery from 2018, 2020, and 2022.
Results show that SVM on Sentinel-2 achieved the highest accuracy (F1 score: 0.84 ± 0.11, overall accuracy: 88 ± 2.1 %, kappa: 0.84 ± 0.03) with the lowest total disagreement values (D% = 12.6 in 2020, 13.1 in 2022). Consequently, SVM with Sentinel-2 was selected for LC change detection, employing trajectory analysis to assess urban development dynamics. The quantity gain component accounted for 5 % of the study area, representing net urban expansion, while the exchange component (10 %) indicated bidirectional shifts between developed and non-developed classes. Given Debrecen's rapid industrialization and the lack of a robust LC classification strategy for hydrological applications, this research refines LC change detection methods. It improves water balance calculations by LC type, strengthening the hydrological framework. By demonstrating the value of satellite imagery and GIS in monitoring urbanization, the findings support future urban water balance assessments, sustainable planning, and resource management, providing local authorities with a robust tool to adapt spatial strategies to an evolving landscape.

Abstract Image

使用比较机器学习方法改进城市水管理的土地覆盖分类和变化检测
准确的土地覆盖(LC)地图对于城市水平衡建模至关重要,特别是在匈牙利德布勒森等快速城市化的城市,那里的工业扩张自2019年以来愈演愈烈。然而,由于评估分类器和卫星数据的最佳组合的研究有限,LC分类仍然具有挑战性。本研究建立在先前研究的基础上,采用2018年、2020年和2022年的Sentinel-2和Landsat 8图像,对三种机器学习分类器——支持向量机(SVM)、最大似然分类(MLC)和随机森林(RF)——进行LC分类的比较分析。结果表明,Sentinel-2上的SVM准确率最高(F1值为0.84±0.11,总体精度为88±2.1%,kappa值为0.84±0.03),总不一致值最低(D%为12.6,2022年为13.1)。因此,选择基于Sentinel-2的SVM进行LC变化检测,利用轨迹分析评估城市发展动态。数量增益部分占研究面积的5%,代表城市净扩张,而交换部分(10%)表明发达阶层和不发达阶层之间的双向转移。鉴于德布勒森的快速工业化和缺乏用于水文应用的强大的LC分类策略,本研究改进了LC变化检测方法。它改进了LC类型的水平衡计算,加强了水文框架。通过展示卫星图像和地理信息系统在监测城市化方面的价值,研究结果为未来的城市水平衡评估、可持续规划和资源管理提供了支持,为地方当局提供了一个强大的工具,使空间战略适应不断变化的景观。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Challenges
Environmental Challenges Environmental Science-Environmental Engineering
CiteScore
8.00
自引率
0.00%
发文量
249
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信