Divergent effects of noradrenergic activation and orexin receptor 1 blockade on hippocampal structure, anxiety-like behavior, and social interaction following chronic stress
{"title":"Divergent effects of noradrenergic activation and orexin receptor 1 blockade on hippocampal structure, anxiety-like behavior, and social interaction following chronic stress","authors":"Masoumeh Sarfi, Mahmoud Elahdadi Salmani, Taghi Lashkarbolouki, Iran Goudarzi","doi":"10.1016/j.pbb.2025.173997","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic stress (Ch.S) has detrimental effects on the brain's structure and function, particularly in the hippocampus. The noradrenergic and orexinergic systems play crucial roles in the stress response and regulation of stress-related behaviors. This study aimed to investigate the interaction between noradrenergic activation and orexin receptor 1 inhibition on chronic stress-induced hippocampal alterations.</div><div>The study conducted experiments on male Wistar rats, subjected to Ch.S, OXr1 blocking, noradrenergic activation, or a combination of these treatments. Plasma corticosterone level was measured using a fluorometric method. Behavioral assessment of social maze, elevated plus maze (EPM) and novel object recognition (NOR) test were performed. Then, the expression of prepro-orexin, OXr1, and glucocorticoid receptor (GR) was analyzed using semiquantitative RT-PCR. Neuronal populations were quantified through Nissl staining.</div><div>The data revealed that all stress and yohimbine groups had elevated plasma corticosterone levels. Ch.S significantly altered behavior, impairing social interaction, disrupting object recognition memory and increasing anxiety-like responses in the EPM. OXr1 blocking reversed these stress-induced behavioral deficits, while yohimbine did not improve these behavioral outcomes. Chronic stress led to a significant increase in prepro-orexin, OXr1, and GR expression. While blocking OXr1 helped counteract these stress-induced changes, yohimbine failed to restore the expression levels. Ch.S reduced hippocampal neuronal populations, while OXr1 blocking partially reversed this effect, and yohimbine further recovered the reversal.</div><div>These findings indicate that blocking hippocampal OXr1 can mitigate the adverse effects of chronic stress on both hippocampal structure and anxiety-like behaviors, while noradrenergic signaling appears to have differential effects on behavioral and cellular measures.</div></div>","PeriodicalId":19893,"journal":{"name":"Pharmacology Biochemistry and Behavior","volume":"250 ","pages":"Article 173997"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacology Biochemistry and Behavior","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0091305725000449","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic stress (Ch.S) has detrimental effects on the brain's structure and function, particularly in the hippocampus. The noradrenergic and orexinergic systems play crucial roles in the stress response and regulation of stress-related behaviors. This study aimed to investigate the interaction between noradrenergic activation and orexin receptor 1 inhibition on chronic stress-induced hippocampal alterations.
The study conducted experiments on male Wistar rats, subjected to Ch.S, OXr1 blocking, noradrenergic activation, or a combination of these treatments. Plasma corticosterone level was measured using a fluorometric method. Behavioral assessment of social maze, elevated plus maze (EPM) and novel object recognition (NOR) test were performed. Then, the expression of prepro-orexin, OXr1, and glucocorticoid receptor (GR) was analyzed using semiquantitative RT-PCR. Neuronal populations were quantified through Nissl staining.
The data revealed that all stress and yohimbine groups had elevated plasma corticosterone levels. Ch.S significantly altered behavior, impairing social interaction, disrupting object recognition memory and increasing anxiety-like responses in the EPM. OXr1 blocking reversed these stress-induced behavioral deficits, while yohimbine did not improve these behavioral outcomes. Chronic stress led to a significant increase in prepro-orexin, OXr1, and GR expression. While blocking OXr1 helped counteract these stress-induced changes, yohimbine failed to restore the expression levels. Ch.S reduced hippocampal neuronal populations, while OXr1 blocking partially reversed this effect, and yohimbine further recovered the reversal.
These findings indicate that blocking hippocampal OXr1 can mitigate the adverse effects of chronic stress on both hippocampal structure and anxiety-like behaviors, while noradrenergic signaling appears to have differential effects on behavioral and cellular measures.
期刊介绍:
Pharmacology Biochemistry & Behavior publishes original reports in the areas of pharmacology and biochemistry in which the primary emphasis and theoretical context are behavioral. Contributions may involve clinical, preclinical, or basic research. Purely biochemical or toxicology studies will not be published. Papers describing the behavioral effects of novel drugs in models of psychiatric, neurological and cognitive disorders, and central pain must include a positive control unless the paper is on a disease where such a drug is not available yet. Papers focusing on physiological processes (e.g., peripheral pain mechanisms, body temperature regulation, seizure activity) are not accepted as we would like to retain the focus of Pharmacology Biochemistry & Behavior on behavior and its interaction with the biochemistry and neurochemistry of the central nervous system. Papers describing the effects of plant materials are generally not considered, unless the active ingredients are studied, the extraction method is well described, the doses tested are known, and clear and definite experimental evidence on the mechanism of action of the active ingredients is provided.