Deyin Gu , Hao Yang , Yinghua Song , Li Wen , Si Liu , Ting Yao
{"title":"Design of impeller blades for fluid laminar mixing in an unbaffled stirred reactor","authors":"Deyin Gu , Hao Yang , Yinghua Song , Li Wen , Si Liu , Ting Yao","doi":"10.1016/j.jtice.2025.106077","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Many studies reported that the isolated zones are obstacles for the fluid laminar mixing process. The key to intensify the laminar mixing process lies in minimizing or eliminating the isolated zone while maximizing the chaotic mixing zone. In this work, dislocated fractal impeller (DF impeller) was applied to minimize the isolated zone and maximize the chaotic mixing zone for fluid laminar mixing process.</div></div><div><h3>Methods</h3><div>The mixing performance of dislocated pitched-blade impeller (DPB impeller) and DF impeller were explored through numerical simulation and experimentation.</div></div><div><h3>Significant findings</h3><div>Results showed that the impeller blades with dislocated fractal structure design resulted in a reduction in power consumption and power number compared to the straight impeller blades with the same blade area. Meanwhile, this design could improve the shear action of impeller blade edges on the fluid, enhance the radial and axial velocity, and minimize the pressure differential between its front and rear sides while reducing the recirculation zone behind the impeller blades compared to straight impeller blades under the same operating conditions. In addition, DF impeller could decrease mixing time, reduce the isolated zone and increase the chaotic mixing zone compared with DPB impeller under the same operating conditions.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"171 ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107025001300","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Many studies reported that the isolated zones are obstacles for the fluid laminar mixing process. The key to intensify the laminar mixing process lies in minimizing or eliminating the isolated zone while maximizing the chaotic mixing zone. In this work, dislocated fractal impeller (DF impeller) was applied to minimize the isolated zone and maximize the chaotic mixing zone for fluid laminar mixing process.
Methods
The mixing performance of dislocated pitched-blade impeller (DPB impeller) and DF impeller were explored through numerical simulation and experimentation.
Significant findings
Results showed that the impeller blades with dislocated fractal structure design resulted in a reduction in power consumption and power number compared to the straight impeller blades with the same blade area. Meanwhile, this design could improve the shear action of impeller blade edges on the fluid, enhance the radial and axial velocity, and minimize the pressure differential between its front and rear sides while reducing the recirculation zone behind the impeller blades compared to straight impeller blades under the same operating conditions. In addition, DF impeller could decrease mixing time, reduce the isolated zone and increase the chaotic mixing zone compared with DPB impeller under the same operating conditions.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.