Wenlong Yi , Li Zhang , Sergey Kuzmin , Igor Gerasimov , Muhua Liu
{"title":"Agricultural large language model for standardized production of distinctive agricultural products","authors":"Wenlong Yi , Li Zhang , Sergey Kuzmin , Igor Gerasimov , Muhua Liu","doi":"10.1016/j.compag.2025.110218","DOIUrl":null,"url":null,"abstract":"<div><div>To address the diverse nature of specialty agricultural product standardization, its complex and cumbersome development process, and lengthy drafting cycles, while simultaneously tackling challenges such as outdated standardization documents and hallucinations caused by general large language models’ delayed access to agricultural domain information. This study constructs a multi-stage cascaded large language model based on a hybrid retrieval-augmented mechanism. The model comprises three core modules: (1) A multi-source retrieval augmentation module that achieves comprehensive external knowledge acquisition through vector retrieval, keyword retrieval, and knowledge graph retrieval branches; (2) A knowledge fusion module that filters redundant information using inverse ranking fusion and graph structure pruning methods to achieve precise injection of high-quality knowledge; (3) A domain adaptation module that enhances the model’s understanding of agricultural terminology through vertical domain fine-tuning. Experimental results show that in the standardization document summarization task, the model achieves chrF, BERTscore, and Gscore metrics of 34.85, 74.88, and 39.85, respectively, representing improvements of 59.52%, 35.28%, and 72.84% over the BART baseline model, and 58.54%, 24.25%, and 59.54% over the T5 model. This study enriches the theoretical foundation of large language models in agriculture and provides intelligent technical support for specialty agricultural product standardization development.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"234 ","pages":"Article 110218"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925003242","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To address the diverse nature of specialty agricultural product standardization, its complex and cumbersome development process, and lengthy drafting cycles, while simultaneously tackling challenges such as outdated standardization documents and hallucinations caused by general large language models’ delayed access to agricultural domain information. This study constructs a multi-stage cascaded large language model based on a hybrid retrieval-augmented mechanism. The model comprises three core modules: (1) A multi-source retrieval augmentation module that achieves comprehensive external knowledge acquisition through vector retrieval, keyword retrieval, and knowledge graph retrieval branches; (2) A knowledge fusion module that filters redundant information using inverse ranking fusion and graph structure pruning methods to achieve precise injection of high-quality knowledge; (3) A domain adaptation module that enhances the model’s understanding of agricultural terminology through vertical domain fine-tuning. Experimental results show that in the standardization document summarization task, the model achieves chrF, BERTscore, and Gscore metrics of 34.85, 74.88, and 39.85, respectively, representing improvements of 59.52%, 35.28%, and 72.84% over the BART baseline model, and 58.54%, 24.25%, and 59.54% over the T5 model. This study enriches the theoretical foundation of large language models in agriculture and provides intelligent technical support for specialty agricultural product standardization development.
期刊介绍:
Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.