Agricultural large language model for standardized production of distinctive agricultural products

IF 7.7 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Wenlong Yi , Li Zhang , Sergey Kuzmin , Igor Gerasimov , Muhua Liu
{"title":"Agricultural large language model for standardized production of distinctive agricultural products","authors":"Wenlong Yi ,&nbsp;Li Zhang ,&nbsp;Sergey Kuzmin ,&nbsp;Igor Gerasimov ,&nbsp;Muhua Liu","doi":"10.1016/j.compag.2025.110218","DOIUrl":null,"url":null,"abstract":"<div><div>To address the diverse nature of specialty agricultural product standardization, its complex and cumbersome development process, and lengthy drafting cycles, while simultaneously tackling challenges such as outdated standardization documents and hallucinations caused by general large language models’ delayed access to agricultural domain information. This study constructs a multi-stage cascaded large language model based on a hybrid retrieval-augmented mechanism. The model comprises three core modules: (1) A multi-source retrieval augmentation module that achieves comprehensive external knowledge acquisition through vector retrieval, keyword retrieval, and knowledge graph retrieval branches; (2) A knowledge fusion module that filters redundant information using inverse ranking fusion and graph structure pruning methods to achieve precise injection of high-quality knowledge; (3) A domain adaptation module that enhances the model’s understanding of agricultural terminology through vertical domain fine-tuning. Experimental results show that in the standardization document summarization task, the model achieves chrF, BERTscore, and Gscore metrics of 34.85, 74.88, and 39.85, respectively, representing improvements of 59.52%, 35.28%, and 72.84% over the BART baseline model, and 58.54%, 24.25%, and 59.54% over the T5 model. This study enriches the theoretical foundation of large language models in agriculture and provides intelligent technical support for specialty agricultural product standardization development.</div></div>","PeriodicalId":50627,"journal":{"name":"Computers and Electronics in Agriculture","volume":"234 ","pages":"Article 110218"},"PeriodicalIF":7.7000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Electronics in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168169925003242","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the diverse nature of specialty agricultural product standardization, its complex and cumbersome development process, and lengthy drafting cycles, while simultaneously tackling challenges such as outdated standardization documents and hallucinations caused by general large language models’ delayed access to agricultural domain information. This study constructs a multi-stage cascaded large language model based on a hybrid retrieval-augmented mechanism. The model comprises three core modules: (1) A multi-source retrieval augmentation module that achieves comprehensive external knowledge acquisition through vector retrieval, keyword retrieval, and knowledge graph retrieval branches; (2) A knowledge fusion module that filters redundant information using inverse ranking fusion and graph structure pruning methods to achieve precise injection of high-quality knowledge; (3) A domain adaptation module that enhances the model’s understanding of agricultural terminology through vertical domain fine-tuning. Experimental results show that in the standardization document summarization task, the model achieves chrF, BERTscore, and Gscore metrics of 34.85, 74.88, and 39.85, respectively, representing improvements of 59.52%, 35.28%, and 72.84% over the BART baseline model, and 58.54%, 24.25%, and 59.54% over the T5 model. This study enriches the theoretical foundation of large language models in agriculture and provides intelligent technical support for specialty agricultural product standardization development.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers and Electronics in Agriculture
Computers and Electronics in Agriculture 工程技术-计算机:跨学科应用
CiteScore
15.30
自引率
14.50%
发文量
800
审稿时长
62 days
期刊介绍: Computers and Electronics in Agriculture provides international coverage of advancements in computer hardware, software, electronic instrumentation, and control systems applied to agricultural challenges. Encompassing agronomy, horticulture, forestry, aquaculture, and animal farming, the journal publishes original papers, reviews, and applications notes. It explores the use of computers and electronics in plant or animal agricultural production, covering topics like agricultural soils, water, pests, controlled environments, and waste. The scope extends to on-farm post-harvest operations and relevant technologies, including artificial intelligence, sensors, machine vision, robotics, networking, and simulation modeling. Its companion journal, Smart Agricultural Technology, continues the focus on smart applications in production agriculture.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信