Boundedness and global existence in a higher-dimensional parabolic-elliptic-ODE chemotaxis-haptotaxis model with remodeling of non-diffusible attractant
{"title":"Boundedness and global existence in a higher-dimensional parabolic-elliptic-ODE chemotaxis-haptotaxis model with remodeling of non-diffusible attractant","authors":"Ling Liu","doi":"10.1016/j.jmaa.2025.129473","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses the issue of boundedness for solutions to the following quasilinear chemotaxis-haptotaxis model of parabolic-elliptic-ODE type:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>−</mo><mi>χ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>v</mi><mo>)</mo><mo>−</mo><mi>ξ</mi><mi>∇</mi><mo>⋅</mo><mo>(</mo><mi>u</mi><mi>∇</mi><mi>w</mi><mo>)</mo><mo>+</mo><mi>u</mi><mo>(</mo><mi>r</mi><mo>−</mo><mi>μ</mi><msup><mrow><mi>u</mi></mrow><mrow><mi>γ</mi><mo>−</mo><mn>1</mn></mrow></msup><mo>−</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><mn>0</mn><mo>=</mo><mi>Δ</mi><mi>v</mi><mo>+</mo><mi>u</mi><mo>−</mo><mi>v</mi><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd><msub><mrow><mi>w</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mo>−</mo><mi>v</mi><mi>w</mi><mo>+</mo><mi>η</mi><mi>w</mi><mo>(</mo><mn>1</mn><mo>−</mo><mi>u</mi><mo>−</mo><mi>w</mi><mo>)</mo><mo>,</mo><mspace></mspace><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo><mi>t</mi><mo>></mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> subject to zero-flux boundary conditions within a smooth, bounded domain <span><math><mi>Ω</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> (with <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>). The parameters involved are <span><math><mi>χ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>μ</mi><mo>></mo><mn>0</mn><mo>,</mo><mi>r</mi><mo>≥</mo><mn>0</mn></math></span>, and <span><math><mi>η</mi><mo>></mo><mn>0</mn></math></span>. It is demonstrated that, provided <span><math><mi>γ</mi><mo>></mo><mn>3</mn><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mi>N</mi></mrow></mfrac></math></span>, for sufficiently smooth initial data, the corresponding initial-boundary problem admits a unique global-in-time classical solution, which remains uniformly bounded. To the best of our knowledge, these are the first results concerning the boundedness of solutions for this parabolic-elliptic-ODE system in higher dimensions.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"549 1","pages":"Article 129473"},"PeriodicalIF":1.2000,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X25002549","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses the issue of boundedness for solutions to the following quasilinear chemotaxis-haptotaxis model of parabolic-elliptic-ODE type: subject to zero-flux boundary conditions within a smooth, bounded domain (with ). The parameters involved are , and . It is demonstrated that, provided , for sufficiently smooth initial data, the corresponding initial-boundary problem admits a unique global-in-time classical solution, which remains uniformly bounded. To the best of our knowledge, these are the first results concerning the boundedness of solutions for this parabolic-elliptic-ODE system in higher dimensions.
期刊介绍:
The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions.
Papers are sought which employ one or more of the following areas of classical analysis:
• Analytic number theory
• Functional analysis and operator theory
• Real and harmonic analysis
• Complex analysis
• Numerical analysis
• Applied mathematics
• Partial differential equations
• Dynamical systems
• Control and Optimization
• Probability
• Mathematical biology
• Combinatorics
• Mathematical physics.