Saba Goharshenas Moghadam, Gelareh Momen, Reza Jafari
{"title":"Navigating ice-free Horizons: A Review on the Role of Ionic liquids and Deep eutectic solvents in Anti-icing Technologies","authors":"Saba Goharshenas Moghadam, Gelareh Momen, Reza Jafari","doi":"10.1016/j.jil.2025.100139","DOIUrl":null,"url":null,"abstract":"<div><div>This review investigates the unexplored potential of ionic liquids (ILs) and deep eutectic solvents (DESs) as innovative solutions for advancing anti-icing technologies, particularly in harsh sub-freezing conditions, with a focus on coating applications. Despite limited exploration, ILs and DESs stand out due to their remarkable properties—low melting points, excellent hydrogen-bond donor capabilities, thermal stability, and the formation of quasi-liquid layers that drastically reduce ice adhesion. While research on IL-based coatings for ice mitigation is still in its infancy, the promising synergy between DESs and ILs paves the way for creating highly effective ice-resistant surfaces. DESs, recognized for their eco-friendly and straightforward preparation, have been primarily studied for anti-freezing resilience, leaving their potential as ice growth inhibitors largely unexplored. This review presents DESs as effective ice growth inhibitors and highlights their synergistic combination with ILs, functioning as dynamic interface melting agents, for enhanced ice mitigation performance. Furthermore, the review consolidates current studies, emphasizing the need for further investigation into ILs and DESs for combating ice formation. It also proposes future research directions, such as exploring diverse IL chemistries, enhancing the stability of ILs, and investigating novel matrix materials to improve mechanical durability. The review provides a broad perspective on integrating these materials into various industrial and environmental applications, offering fresh insights into their transformative potential in anti-icing systems.</div></div>","PeriodicalId":100794,"journal":{"name":"Journal of Ionic Liquids","volume":"5 1","pages":"Article 100139"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ionic Liquids","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772422025000084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This review investigates the unexplored potential of ionic liquids (ILs) and deep eutectic solvents (DESs) as innovative solutions for advancing anti-icing technologies, particularly in harsh sub-freezing conditions, with a focus on coating applications. Despite limited exploration, ILs and DESs stand out due to their remarkable properties—low melting points, excellent hydrogen-bond donor capabilities, thermal stability, and the formation of quasi-liquid layers that drastically reduce ice adhesion. While research on IL-based coatings for ice mitigation is still in its infancy, the promising synergy between DESs and ILs paves the way for creating highly effective ice-resistant surfaces. DESs, recognized for their eco-friendly and straightforward preparation, have been primarily studied for anti-freezing resilience, leaving their potential as ice growth inhibitors largely unexplored. This review presents DESs as effective ice growth inhibitors and highlights their synergistic combination with ILs, functioning as dynamic interface melting agents, for enhanced ice mitigation performance. Furthermore, the review consolidates current studies, emphasizing the need for further investigation into ILs and DESs for combating ice formation. It also proposes future research directions, such as exploring diverse IL chemistries, enhancing the stability of ILs, and investigating novel matrix materials to improve mechanical durability. The review provides a broad perspective on integrating these materials into various industrial and environmental applications, offering fresh insights into their transformative potential in anti-icing systems.