Heavy metals promote the formation of multidrug-tolerant Staphylococcus aureus and Escherichia coli persisters

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES
Seongeun Baek , Jinbeom Seo , Taegwan Yun , Jin Kim , YuJin Shin , Jiwoo Choi , JuOae Chang , Inseo Kim , Yung-Hun Yang , Wooseong Kim , Wonsik Lee
{"title":"Heavy metals promote the formation of multidrug-tolerant Staphylococcus aureus and Escherichia coli persisters","authors":"Seongeun Baek ,&nbsp;Jinbeom Seo ,&nbsp;Taegwan Yun ,&nbsp;Jin Kim ,&nbsp;YuJin Shin ,&nbsp;Jiwoo Choi ,&nbsp;JuOae Chang ,&nbsp;Inseo Kim ,&nbsp;Yung-Hun Yang ,&nbsp;Wooseong Kim ,&nbsp;Wonsik Lee","doi":"10.1016/j.ecoenv.2025.118014","DOIUrl":null,"url":null,"abstract":"<div><div>Bacterial persisters are dormant phenotypic variants that are tolerant to antibiotics, contributing to treatment failure and the emergence of antimicrobial resistance. Although the formation of persisters has been extensively studied in regards to bacterial infections and treatment, such as antibiotic exposure or intracellular survival within macrophages, the role of environmental stressors in persister formation remains largely unexplored. In this study, we investigate the role of environmental heavy metals, specifically arsenic (As), cadmium (Cd), and mercury (Hg), in promoting persister cell formation in <em>Staphylococcus aureus</em> and <em>Escherichia coli</em>. Log-phase cultures were exposed to heavy metals (5 mM As, 1.25 mM Cd, 4 µM Hg for <em>S. aureus</em>; 12.5 mM As, 2 mM Cd, and 15 µM Hg for <em>E. coli</em>) for 0.5 h to induce persister cells. We observed that exposure to these metals induced persister cell formation, confirmed by intracellular ATP levels through microscopy and luciferase assays, as well as by reactive oxygen species (ROS) levels using carboxy-H2DCFDA. Short-term heavy metal exposure strongly depleted intracellular ATP while generating ROS. Moreover, we observed enhanced expression of genes involved in the SOS response, including <em>recA</em>, <em>umuC</em>, <em>dinB</em>, <em>rexA</em>, <em>rexB</em>, <em>sulA</em>, <em>rpoS</em>, and <em>soxR</em>, as measured by qPCR. This response was likely induced by elevated ROS levels following heavy metal exposure. Furthermore, we demonstrate that heavy metal-induced bacterial persisters exhibited a substantially increased emergence of antibiotic resistance, as shown by ciprofloxacin resistance developing in the presence of heavy metals. Therefore, our results clearly demonstrate that heavy metals can induce persister cells by depleting cellular ATP and generating ROS, and these bacterial responses to heavy metals substantially contribute to antibiotic resistance. These findings highlight the intricate relationship between environmental heavy metals, bacterial persister formation, and antibiotic resistance, emphasizing the need for a “One Health” strategy to address the growing antibiotic resistance crisis.</div></div>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"293 ","pages":"Article 118014"},"PeriodicalIF":6.2000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0147651325003501","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bacterial persisters are dormant phenotypic variants that are tolerant to antibiotics, contributing to treatment failure and the emergence of antimicrobial resistance. Although the formation of persisters has been extensively studied in regards to bacterial infections and treatment, such as antibiotic exposure or intracellular survival within macrophages, the role of environmental stressors in persister formation remains largely unexplored. In this study, we investigate the role of environmental heavy metals, specifically arsenic (As), cadmium (Cd), and mercury (Hg), in promoting persister cell formation in Staphylococcus aureus and Escherichia coli. Log-phase cultures were exposed to heavy metals (5 mM As, 1.25 mM Cd, 4 µM Hg for S. aureus; 12.5 mM As, 2 mM Cd, and 15 µM Hg for E. coli) for 0.5 h to induce persister cells. We observed that exposure to these metals induced persister cell formation, confirmed by intracellular ATP levels through microscopy and luciferase assays, as well as by reactive oxygen species (ROS) levels using carboxy-H2DCFDA. Short-term heavy metal exposure strongly depleted intracellular ATP while generating ROS. Moreover, we observed enhanced expression of genes involved in the SOS response, including recA, umuC, dinB, rexA, rexB, sulA, rpoS, and soxR, as measured by qPCR. This response was likely induced by elevated ROS levels following heavy metal exposure. Furthermore, we demonstrate that heavy metal-induced bacterial persisters exhibited a substantially increased emergence of antibiotic resistance, as shown by ciprofloxacin resistance developing in the presence of heavy metals. Therefore, our results clearly demonstrate that heavy metals can induce persister cells by depleting cellular ATP and generating ROS, and these bacterial responses to heavy metals substantially contribute to antibiotic resistance. These findings highlight the intricate relationship between environmental heavy metals, bacterial persister formation, and antibiotic resistance, emphasizing the need for a “One Health” strategy to address the growing antibiotic resistance crisis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信