Unraveling osteogenesis mechanisms of the empowered VitaFlux adaptive regeneration biomaterials for bone tissue engineering: Insights into the role of BBGs/BSBGs
Xian Li , Kun Su , Limin Zhao , Hao Zhang , Qiang Yang , Ping Du , Xiaofeng Chen , Haobo Pan
{"title":"Unraveling osteogenesis mechanisms of the empowered VitaFlux adaptive regeneration biomaterials for bone tissue engineering: Insights into the role of BBGs/BSBGs","authors":"Xian Li , Kun Su , Limin Zhao , Hao Zhang , Qiang Yang , Ping Du , Xiaofeng Chen , Haobo Pan","doi":"10.1016/j.bioactmat.2025.03.006","DOIUrl":null,"url":null,"abstract":"<div><div>Bone tissue engineering materials are crucial for bone repair, but existing repair materials still face many challenges, including poor biocompatibility and bioactivity, slow self-repair processes, limited adaptability, inability to promote angiogenesis and so on. To address these issues, the development of third-generation bone repair materials, which are being designed to stimulate specific cellular responses at the molecular level, such as borate and borosilicate bioactive glasses (BBGs/BSBGs) that activate cells and genes, offers new potential for promoting bone tissue self-renewing. Their unique characteristic lies in a flow of life-giving energy, releasing beneficial ions such as boron, calcium and silicon to stimulate cell proliferation and differentiation, accelerating the regeneration of bones. Through this dynamic repair mechanism, these VitaFlux glasses operate like a “living system” within the body, not only speeding up the healing of damaged tissues but also interacting seamlessly with surrounding tissues during the repair process. In this review, we provide a comprehensive analysis of the current understanding of the osteogenesis mechanisms of BBGs/BSBGs, emphasizing their interactions with cells, including ion release and exchange, protein adsorption, and cell adhesion. We also examine key osteogenic signaling pathways related to the alkaline and ionic microenvironments of BBGs/BSBGs, such as the cell cycle, Wnt, MAPK, and BMP signaling pathways, along with macrophage polarization and angiogenesis. Additionally, strategies and future prospects for advancing BBGs/BSBGs research are discussed. Special attention is given to the NaBC1 and GPCR-mediated signaling pathways, which require further investigation.</div></div>","PeriodicalId":8762,"journal":{"name":"Bioactive Materials","volume":"49 ","pages":"Pages 271-290"},"PeriodicalIF":18.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioactive Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452199X25001082","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bone tissue engineering materials are crucial for bone repair, but existing repair materials still face many challenges, including poor biocompatibility and bioactivity, slow self-repair processes, limited adaptability, inability to promote angiogenesis and so on. To address these issues, the development of third-generation bone repair materials, which are being designed to stimulate specific cellular responses at the molecular level, such as borate and borosilicate bioactive glasses (BBGs/BSBGs) that activate cells and genes, offers new potential for promoting bone tissue self-renewing. Their unique characteristic lies in a flow of life-giving energy, releasing beneficial ions such as boron, calcium and silicon to stimulate cell proliferation and differentiation, accelerating the regeneration of bones. Through this dynamic repair mechanism, these VitaFlux glasses operate like a “living system” within the body, not only speeding up the healing of damaged tissues but also interacting seamlessly with surrounding tissues during the repair process. In this review, we provide a comprehensive analysis of the current understanding of the osteogenesis mechanisms of BBGs/BSBGs, emphasizing their interactions with cells, including ion release and exchange, protein adsorption, and cell adhesion. We also examine key osteogenic signaling pathways related to the alkaline and ionic microenvironments of BBGs/BSBGs, such as the cell cycle, Wnt, MAPK, and BMP signaling pathways, along with macrophage polarization and angiogenesis. Additionally, strategies and future prospects for advancing BBGs/BSBGs research are discussed. Special attention is given to the NaBC1 and GPCR-mediated signaling pathways, which require further investigation.
Bioactive MaterialsBiochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
28.00
自引率
6.30%
发文量
436
审稿时长
20 days
期刊介绍:
Bioactive Materials is a peer-reviewed research publication that focuses on advancements in bioactive materials. The journal accepts research papers, reviews, and rapid communications in the field of next-generation biomaterials that interact with cells, tissues, and organs in various living organisms.
The primary goal of Bioactive Materials is to promote the science and engineering of biomaterials that exhibit adaptiveness to the biological environment. These materials are specifically designed to stimulate or direct appropriate cell and tissue responses or regulate interactions with microorganisms.
The journal covers a wide range of bioactive materials, including those that are engineered or designed in terms of their physical form (e.g. particulate, fiber), topology (e.g. porosity, surface roughness), or dimensions (ranging from macro to nano-scales). Contributions are sought from the following categories of bioactive materials:
Bioactive metals and alloys
Bioactive inorganics: ceramics, glasses, and carbon-based materials
Bioactive polymers and gels
Bioactive materials derived from natural sources
Bioactive composites
These materials find applications in human and veterinary medicine, such as implants, tissue engineering scaffolds, cell/drug/gene carriers, as well as imaging and sensing devices.