On Chalykh's approach to eigenfunctions of DIM-induced integrable Hamiltonians

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
A. Mironov , A. Morozov , A. Popolitov
{"title":"On Chalykh's approach to eigenfunctions of DIM-induced integrable Hamiltonians","authors":"A. Mironov ,&nbsp;A. Morozov ,&nbsp;A. Popolitov","doi":"10.1016/j.physletb.2025.139380","DOIUrl":null,"url":null,"abstract":"<div><div>Quite some years ago, Oleg Chalykh has built a nice theory from the observation that the Macdonald polynomial reduces at <span><math><mi>t</mi><mo>=</mo><msup><mrow><mi>q</mi></mrow><mrow><mo>−</mo><mi>m</mi></mrow></msup></math></span> to a sum over permutations of simpler polynomials called Baker-Akhiezer functions, which can be unambiguously constructed from a system of linear difference equations. Moreover, he also proposed a generalization of these polynomials to the twisted Baker-Akhiezer functions. Recently, in a private communication Oleg Chalykh suggested that these twisted Baker-Akhiezer functions could provide eigenfunctions of the commuting Hamiltonians associated with the <span><math><mo>(</mo><mo>−</mo><mn>1</mn><mo>,</mo><mi>a</mi><mo>)</mo></math></span> rays of the Ding-Iohara-Miki algebra. In the paper, we discuss this suggestion and some evidence in its support.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"863 ","pages":"Article 139380"},"PeriodicalIF":4.3000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325001406","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Quite some years ago, Oleg Chalykh has built a nice theory from the observation that the Macdonald polynomial reduces at t=qm to a sum over permutations of simpler polynomials called Baker-Akhiezer functions, which can be unambiguously constructed from a system of linear difference equations. Moreover, he also proposed a generalization of these polynomials to the twisted Baker-Akhiezer functions. Recently, in a private communication Oleg Chalykh suggested that these twisted Baker-Akhiezer functions could provide eigenfunctions of the commuting Hamiltonians associated with the (1,a) rays of the Ding-Iohara-Miki algebra. In the paper, we discuss this suggestion and some evidence in its support.
dim诱导可积哈密顿算子特征函数的Chalykh方法
几年前,奥列格·查利克(Oleg Chalykh)根据麦克唐纳多项式在t=q−m处简化为简单多项式(称为Baker-Akhiezer函数)的排列和的观察建立了一个很好的理论,这种简单多项式可以从线性差分方程系统中明确地构造出来。此外,他还提出将这些多项式推广到扭曲的Baker-Akhiezer函数。最近,Oleg Chalykh在一篇私人通信中提出,这些扭曲的Baker-Akhiezer函数可以提供与Ding-Iohara-Miki代数的(- 1,a)射线相关的交换哈密顿量的本征函数。在本文中,我们讨论了这一建议和一些证据支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信