The wavefront shift method for bay beaches

IF 4.2 2区 工程技术 Q1 ENGINEERING, CIVIL
Mariano Buccino, Sara Tuozzo, Mario Calabrese
{"title":"The wavefront shift method for bay beaches","authors":"Mariano Buccino,&nbsp;Sara Tuozzo,&nbsp;Mario Calabrese","doi":"10.1016/j.coastaleng.2025.104740","DOIUrl":null,"url":null,"abstract":"<div><div>Bay beaches, sheltered by one or more headlands, are predominant physiographic features along oceanic and sea coasts. Their distinctive planform is created through wave sheltering caused by diffraction, along with refraction wherever the indentation of the bay is large. The asymptotic scenario entailing no littoral drift along the bay is known as “static equilibrium”, and the shoreline contour associated with this long-term stable state is denoted as the Static Equilibrium Planform (SEP). SEP prediction is a crucial concept for engineering applications, as it serves to either check for the status of existing beaches or address erosion issues via headland control. The practical impact of this topic is reflected in the remarkable body of available literature. This article discusses a new SEP predictor, which focuses on wave diffraction as the primary driver shaping the bay. The approach, denoted as the Wavefront Shift Method (WSM), involves translating the diffracted wavefronts along the crestline of the incident waves. Diffracted wavefronts are obtained numerically by propagating regular waves with a Boussinesq model. Unlike other predictors, e.g. the parabolic equation, WSM does not rely on a mathematical formula established a priori; moreover, it features a clear connection to the physics of beach evolution. In 2021 the authors first introduced WSM for single-headland bays as an empirical result from their numerical investigation. This paper provides the method with a theoretical framework and extends it to include bays sheltered by two headlands. This extension is achieved by exploiting the Fraunhofer theory for the diffraction of light. The comparison with 20 natural bays along the Mediterranean coast indicates that WSM is a well-performing, easy-to-use approach with the potential to reduce, in some situations, the degree of subjectivism and complexity of the existing methods.</div></div>","PeriodicalId":50996,"journal":{"name":"Coastal Engineering","volume":"199 ","pages":"Article 104740"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coastal Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378383925000456","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

Bay beaches, sheltered by one or more headlands, are predominant physiographic features along oceanic and sea coasts. Their distinctive planform is created through wave sheltering caused by diffraction, along with refraction wherever the indentation of the bay is large. The asymptotic scenario entailing no littoral drift along the bay is known as “static equilibrium”, and the shoreline contour associated with this long-term stable state is denoted as the Static Equilibrium Planform (SEP). SEP prediction is a crucial concept for engineering applications, as it serves to either check for the status of existing beaches or address erosion issues via headland control. The practical impact of this topic is reflected in the remarkable body of available literature. This article discusses a new SEP predictor, which focuses on wave diffraction as the primary driver shaping the bay. The approach, denoted as the Wavefront Shift Method (WSM), involves translating the diffracted wavefronts along the crestline of the incident waves. Diffracted wavefronts are obtained numerically by propagating regular waves with a Boussinesq model. Unlike other predictors, e.g. the parabolic equation, WSM does not rely on a mathematical formula established a priori; moreover, it features a clear connection to the physics of beach evolution. In 2021 the authors first introduced WSM for single-headland bays as an empirical result from their numerical investigation. This paper provides the method with a theoretical framework and extends it to include bays sheltered by two headlands. This extension is achieved by exploiting the Fraunhofer theory for the diffraction of light. The comparison with 20 natural bays along the Mediterranean coast indicates that WSM is a well-performing, easy-to-use approach with the potential to reduce, in some situations, the degree of subjectivism and complexity of the existing methods.
海湾滩的波前移法
被一个或多个海岬遮蔽的海湾海滩是沿大洋和海岸的主要地理特征。它们独特的平台是通过衍射引起的波浪庇护,以及海湾凹痕大的地方的折射而形成的。无沿岸漂移的渐近情景被称为“静态平衡”,与这种长期稳定状态相关的海岸线等高线被称为静态平衡平台(SEP)。SEP预测对于工程应用来说是一个至关重要的概念,因为它可以检查现有海滩的状态,或者通过岬角控制来解决侵蚀问题。这一主题的实际影响反映在现有文献的显著体。本文讨论了一种新的SEP预测器,着重讨论了波衍射作为形成海湾的主要驱动因素。这种方法被称为波前移位法(WSM),它涉及沿入射波的波峰线平移衍射波前。用布辛涅斯克模型传播规则波,得到了衍射波前。不像其他的预测,例如抛物线方程,WSM不依赖于先验建立的数学公式;此外,它还与海滩演化的物理学有着明确的联系。2021年,作者首次将WSM引入单岬角湾,作为他们数值调查的经验结果。本文为该方法提供了一个理论框架,并将其扩展到包括两个海岬庇护的海湾。这种扩展是通过利用夫琅和费衍射理论来实现的。与地中海沿岸20个天然海湾的比较表明,WSM是一种性能良好、易于使用的方法,在某些情况下有可能减少现有方法的主观主义程度和复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Coastal Engineering
Coastal Engineering 工程技术-工程:大洋
CiteScore
9.20
自引率
13.60%
发文量
0
审稿时长
3.5 months
期刊介绍: Coastal Engineering is an international medium for coastal engineers and scientists. Combining practical applications with modern technological and scientific approaches, such as mathematical and numerical modelling, laboratory and field observations and experiments, it publishes fundamental studies as well as case studies on the following aspects of coastal, harbour and offshore engineering: waves, currents and sediment transport; coastal, estuarine and offshore morphology; technical and functional design of coastal and harbour structures; morphological and environmental impact of coastal, harbour and offshore structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信