Primal-mixed finite element methods for the coupled Biot and Poisson–Nernst–Planck equations

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Gabriel N. Gatica , Cristian Inzunza , Ricardo Ruiz-Baier
{"title":"Primal-mixed finite element methods for the coupled Biot and Poisson–Nernst–Planck equations","authors":"Gabriel N. Gatica ,&nbsp;Cristian Inzunza ,&nbsp;Ricardo Ruiz-Baier","doi":"10.1016/j.camwa.2025.03.004","DOIUrl":null,"url":null,"abstract":"<div><div>We propose mixed finite element methods for the coupled Biot poroelasticity and Poisson–Nernst–Planck equations (modeling ion transport in deformable porous media). For the poroelasticity, we consider a primal-mixed, four-field formulation in terms of the solid displacement, the fluid pressure, the Darcy flux, and the total pressure. In turn, the Poisson–Nernst–Planck equations are formulated in terms of the electrostatic potential, the electric field, the ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation, posed in Banach spaces, exhibits the structure of a perturbed block-diagonal operator consisting of perturbed and generalized saddle-point problems for the Biot equations, a generalized saddle-point system for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst–Planck equations. One of the main novelties here is the well-posedness analysis, hinging on the Banach fixed-point theorem along with small data assumptions, the Babuška–Brezzi theory in Banach spaces, and a slight variant of recent abstract results for perturbed saddle-point problems, again in Banach spaces. The associated Galerkin scheme is addressed similarly, employing the Banach fixed-point theorem to yield discrete well-posedness. A priori error estimates are derived, and simple numerical examples validate the theoretical error bounds, and illustrate the performance of the proposed schemes.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"186 ","pages":"Pages 53-83"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122125000975","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We propose mixed finite element methods for the coupled Biot poroelasticity and Poisson–Nernst–Planck equations (modeling ion transport in deformable porous media). For the poroelasticity, we consider a primal-mixed, four-field formulation in terms of the solid displacement, the fluid pressure, the Darcy flux, and the total pressure. In turn, the Poisson–Nernst–Planck equations are formulated in terms of the electrostatic potential, the electric field, the ionized particle concentrations, their gradients, and the total ionic fluxes. The weak formulation, posed in Banach spaces, exhibits the structure of a perturbed block-diagonal operator consisting of perturbed and generalized saddle-point problems for the Biot equations, a generalized saddle-point system for the Poisson equations, and a perturbed twofold saddle-point problem for the Nernst–Planck equations. One of the main novelties here is the well-posedness analysis, hinging on the Banach fixed-point theorem along with small data assumptions, the Babuška–Brezzi theory in Banach spaces, and a slight variant of recent abstract results for perturbed saddle-point problems, again in Banach spaces. The associated Galerkin scheme is addressed similarly, employing the Banach fixed-point theorem to yield discrete well-posedness. A priori error estimates are derived, and simple numerical examples validate the theoretical error bounds, and illustrate the performance of the proposed schemes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信