Inequalities for eigenvalues of the poly-Laplacian with arbitrary order on spherical domains

IF 1.3 3区 数学 Q2 MATHEMATICS, APPLIED
Yue He, Huan Wang
{"title":"Inequalities for eigenvalues of the poly-Laplacian with arbitrary order on spherical domains","authors":"Yue He,&nbsp;Huan Wang","doi":"10.1016/j.bulsci.2025.103608","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we are devoted to the study of universal inequalities for eigenvalues of the poly-Laplacian with arbitrary order on bounded domains in <span><math><msup><mrow><mi>S</mi></mrow><mrow><mi>n</mi></mrow></msup><mo>(</mo><mn>1</mn><mo>)</mo></math></span>, respectively, and then establish some new universal inequalities that are different from those already present in the literature. In particular, our results can reveal the relationship between the <span><math><mo>(</mo><mi>k</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span>-th eigenvalue and the first <em>k</em> eigenvalues relatively quickly, and some methods used in this paper might be applied to other eigenvalue problems.</div></div>","PeriodicalId":55313,"journal":{"name":"Bulletin des Sciences Mathematiques","volume":"201 ","pages":"Article 103608"},"PeriodicalIF":1.3000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin des Sciences Mathematiques","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000744972500034X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we are devoted to the study of universal inequalities for eigenvalues of the poly-Laplacian with arbitrary order on bounded domains in Sn(1), respectively, and then establish some new universal inequalities that are different from those already present in the literature. In particular, our results can reveal the relationship between the (k+1)-th eigenvalue and the first k eigenvalues relatively quickly, and some methods used in this paper might be applied to other eigenvalue problems.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.90
自引率
7.70%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Founded in 1870, by Gaston Darboux, the Bulletin publishes original articles covering all branches of pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信