Optical quantification and characterization of 3D stress fields and plastic zones around arch tunnel models using stress freezing and 3D printing techniques
Yang Ju , Dongyi Xing , Zhangyu Ren , Shanyong Wang , Kai Wang
{"title":"Optical quantification and characterization of 3D stress fields and plastic zones around arch tunnel models using stress freezing and 3D printing techniques","authors":"Yang Ju , Dongyi Xing , Zhangyu Ren , Shanyong Wang , Kai Wang","doi":"10.1016/j.ijrmms.2025.106088","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate characterization and quantification of the three-dimensional (3D) stress field and plastic zones around tunnels are vital for predicting potential rock bursts and spalling disasters and providing a quantitative basis for rational support design. However, the 3D stress field and plastic deformations around tunnels cannot be easily quantified experimentally because of the limitations of conventional experimental techniques. In this study, a novel experimental method combining photoelastic stress-freezing, phase shifting, and phase unwrapping techniques was proposed to quantitatively characterize the principal stress difference and shear stress around an arch tunnel model fabricated using 3D printing. The plastic deformation zones and elastoplastic boundaries around the tunnel were quantitatively defined using the Tresca yield criterion and stress-optic law. The experimental results obtained by the proposed method were compared with the simulation results of the 3D stress and plastic deformations around the tunnel. The results indicated that the areas with high stresses were primarily located at the corners, sidewalls, and shoulders of the arch tunnel. The sidewalls are stress disturbance zones, whereas the top and bottom are rapidly changing stress zones, indicating that disasters are prone to occur in these areas. Plastic zones were formed primarily at the sidewalls, corners, and shoulders of the tunnel, and the entire morphology exhibited a butterfly shape. The proposed method demonstrates good potential for validating numerical solutions. This study contributes to the understanding of the failure mechanisms of underground tunnels and enhances the prediction and prevention of tunnel disasters.</div></div>","PeriodicalId":54941,"journal":{"name":"International Journal of Rock Mechanics and Mining Sciences","volume":"189 ","pages":"Article 106088"},"PeriodicalIF":7.0000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Rock Mechanics and Mining Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1365160925000656","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate characterization and quantification of the three-dimensional (3D) stress field and plastic zones around tunnels are vital for predicting potential rock bursts and spalling disasters and providing a quantitative basis for rational support design. However, the 3D stress field and plastic deformations around tunnels cannot be easily quantified experimentally because of the limitations of conventional experimental techniques. In this study, a novel experimental method combining photoelastic stress-freezing, phase shifting, and phase unwrapping techniques was proposed to quantitatively characterize the principal stress difference and shear stress around an arch tunnel model fabricated using 3D printing. The plastic deformation zones and elastoplastic boundaries around the tunnel were quantitatively defined using the Tresca yield criterion and stress-optic law. The experimental results obtained by the proposed method were compared with the simulation results of the 3D stress and plastic deformations around the tunnel. The results indicated that the areas with high stresses were primarily located at the corners, sidewalls, and shoulders of the arch tunnel. The sidewalls are stress disturbance zones, whereas the top and bottom are rapidly changing stress zones, indicating that disasters are prone to occur in these areas. Plastic zones were formed primarily at the sidewalls, corners, and shoulders of the tunnel, and the entire morphology exhibited a butterfly shape. The proposed method demonstrates good potential for validating numerical solutions. This study contributes to the understanding of the failure mechanisms of underground tunnels and enhances the prediction and prevention of tunnel disasters.
期刊介绍:
The International Journal of Rock Mechanics and Mining Sciences focuses on original research, new developments, site measurements, and case studies within the fields of rock mechanics and rock engineering. Serving as an international platform, it showcases high-quality papers addressing rock mechanics and the application of its principles and techniques in mining and civil engineering projects situated on or within rock masses. These projects encompass a wide range, including slopes, open-pit mines, quarries, shafts, tunnels, caverns, underground mines, metro systems, dams, hydro-electric stations, geothermal energy, petroleum engineering, and radioactive waste disposal. The journal welcomes submissions on various topics, with particular interest in theoretical advancements, analytical and numerical methods, rock testing, site investigation, and case studies.