Stefania Monteleone, Inaki Morao*, Dmitri G. Fedorov and Tahsin F. Kellici,
{"title":"Quantum Mechanics-Based Ranking of Predicted Proteolysis Targeting Chimeras-Mediated Ternary Complexes","authors":"Stefania Monteleone, Inaki Morao*, Dmitri G. Fedorov and Tahsin F. Kellici, ","doi":"10.1021/acsmedchemlett.4c0053410.1021/acsmedchemlett.4c00534","DOIUrl":null,"url":null,"abstract":"<p >Targeted protein degradation has become the most pursued alternative modality to small-molecule inhibition over the past decade. The traditional strategy of blocking protein activity by tightly binding to a functional substrate pocket has progressed toward proteolysis-targeting chimeras (PROTACs), bivalent molecules that induce the knockdown of targeted proteins. Herein, a combined protocol is described for modeling ternary complexes via well-established approaches. We performed local protein–protein docking using Rosetta protocol and sampled the conformational landscape of a specific PROTAC molecule that was compatible with the generated protein–protein docking poses, followed by double and independent single-linkage/nearest-neighbor clustering for representative selection. Subsequently, we combined the fragment molecular orbital and density functional tight-binding methods to facilitate fast quantum mechanics-based energy calculations of the clustered ternary complexes. Finally, the computed energy values were utilized to score and select the best ternary poses, achieving good agreement with available crystallographic data.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 3","pages":"420–427 420–427"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00534","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Targeted protein degradation has become the most pursued alternative modality to small-molecule inhibition over the past decade. The traditional strategy of blocking protein activity by tightly binding to a functional substrate pocket has progressed toward proteolysis-targeting chimeras (PROTACs), bivalent molecules that induce the knockdown of targeted proteins. Herein, a combined protocol is described for modeling ternary complexes via well-established approaches. We performed local protein–protein docking using Rosetta protocol and sampled the conformational landscape of a specific PROTAC molecule that was compatible with the generated protein–protein docking poses, followed by double and independent single-linkage/nearest-neighbor clustering for representative selection. Subsequently, we combined the fragment molecular orbital and density functional tight-binding methods to facilitate fast quantum mechanics-based energy calculations of the clustered ternary complexes. Finally, the computed energy values were utilized to score and select the best ternary poses, achieving good agreement with available crystallographic data.
期刊介绍:
ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to:
Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics)
Biological characterization of new molecular entities in the context of drug discovery
Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc.
Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry
Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources
Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response
Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic
Mechanistic drug metabolism and regulation of metabolic enzyme gene expression
Chemistry patents relevant to the medicinal chemistry field.