Parahydrogen-Induced Methylated Amino Acid Hyperpolarization and Regression-Based Hyperpolarization Enhancement Factor Prediction

IF 2.7 2区 化学 Q3 CHEMISTRY, PHYSICAL
Sarah Kim, Hye Jin Jeong, Sein Min, Heelim Chae, Ung H. Yoon, Juhee Baek, Jisu Kim, Sung K. Namgoong, Jean Chung and Keunhong Jeong*, 
{"title":"Parahydrogen-Induced Methylated Amino Acid Hyperpolarization and Regression-Based Hyperpolarization Enhancement Factor Prediction","authors":"Sarah Kim,&nbsp;Hye Jin Jeong,&nbsp;Sein Min,&nbsp;Heelim Chae,&nbsp;Ung H. Yoon,&nbsp;Juhee Baek,&nbsp;Jisu Kim,&nbsp;Sung K. Namgoong,&nbsp;Jean Chung and Keunhong Jeong*,&nbsp;","doi":"10.1021/acs.jpca.5c0037310.1021/acs.jpca.5c00373","DOIUrl":null,"url":null,"abstract":"<p >Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are powerful analytical tools with diverse applications in research and medicine. However, the inherently poor signal-to-noise ratios induce technical limitations, which suppress their widespread use. Hyperpolarization enhances the NMR signals by inducing highly nonequilibrated population distributions among the nuclear spin states. We demonstrated real-time amino acid hyperpolarization using signal amplification by reversible exchange (SABRE). We aimed to hydrolyze hyperpolarized methyl esters to induce amino acid hyperpolarization. We successfully hyperpolarized 19 methylated amino acids via SABRE. This groundwork enabled the development of a predictive model for the hyperpolarization enhancement factors of methylated amino acids. The model accurately predicted the hyperpolarization of three synthetic methylated amino acids, paving the way for advanced bio-NMR and MRI applications requiring the immediate hyperpolarization of other amino acids. This research underlines the potential of hyperpolarization in overcoming the current limitations of NMR spectroscopy and MRI.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 10","pages":"2692–2699 2692–2699"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.5c00373","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) are powerful analytical tools with diverse applications in research and medicine. However, the inherently poor signal-to-noise ratios induce technical limitations, which suppress their widespread use. Hyperpolarization enhances the NMR signals by inducing highly nonequilibrated population distributions among the nuclear spin states. We demonstrated real-time amino acid hyperpolarization using signal amplification by reversible exchange (SABRE). We aimed to hydrolyze hyperpolarized methyl esters to induce amino acid hyperpolarization. We successfully hyperpolarized 19 methylated amino acids via SABRE. This groundwork enabled the development of a predictive model for the hyperpolarization enhancement factors of methylated amino acids. The model accurately predicted the hyperpolarization of three synthetic methylated amino acids, paving the way for advanced bio-NMR and MRI applications requiring the immediate hyperpolarization of other amino acids. This research underlines the potential of hyperpolarization in overcoming the current limitations of NMR spectroscopy and MRI.

Abstract Image

核磁共振(NMR)和磁共振成像(MRI)是功能强大的分析工具,在研究和医学领域有着广泛的应用。然而,其固有的低信噪比造成了技术上的限制,阻碍了它们的广泛应用。超极化通过诱导核自旋态之间高度非平衡的种群分布来增强核磁共振信号。我们利用可逆交换信号放大技术(SABRE)证明了氨基酸超极化的实时性。我们的目标是水解超极化甲酯以诱导氨基酸超极化。我们成功地通过 SABRE 使 19 种甲基化氨基酸超极化。在此基础上,我们建立了甲基化氨基酸超极化增强因子的预测模型。该模型准确预测了三种合成甲基化氨基酸的超极化,为需要立即超极化其他氨基酸的先进生物核磁共振和磁共振成像应用铺平了道路。这项研究强调了超极化在克服当前核磁共振光谱和核磁共振成像局限性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信