Morita–Baylis–Hillman Adduct Chemistry as a Tool for the Design of Lysine-Targeted Covalent Ligands

IF 4 3区 医学 Q2 CHEMISTRY, MEDICINAL
Marco Paolino*, Giusy Tassone, Paolo Governa, Mario Saletti, Matteo Lami, Riccardo Carletti, Filippo Sacchetta, Cecilia Pozzi, Maurizio Orlandini, Fabrizio Manetti, Massimo Olivucci and Andrea Cappelli, 
{"title":"Morita–Baylis–Hillman Adduct Chemistry as a Tool for the Design of Lysine-Targeted Covalent Ligands","authors":"Marco Paolino*,&nbsp;Giusy Tassone,&nbsp;Paolo Governa,&nbsp;Mario Saletti,&nbsp;Matteo Lami,&nbsp;Riccardo Carletti,&nbsp;Filippo Sacchetta,&nbsp;Cecilia Pozzi,&nbsp;Maurizio Orlandini,&nbsp;Fabrizio Manetti,&nbsp;Massimo Olivucci and Andrea Cappelli,&nbsp;","doi":"10.1021/acsmedchemlett.4c0047910.1021/acsmedchemlett.4c00479","DOIUrl":null,"url":null,"abstract":"<p >The use of Targeted Covalent Inhibitors (TCIs) is an expanding strategy for the development of innovative drugs. It is driven by two fundamental steps: (1) recognition of the target site by the molecule and (2) establishment of the covalent interaction by its reactive group. The development of new TCIs depends on the development of new warheads. Here, we propose the use of Morita–Baylis–Hillman adducts (MBHAs) to covalently bind Lys strategically placed inside a lipophilic pocket. A human cellular retinoic acid binding protein II mutant (M2) was selected as a test bench for a library of 19 MBHAs. The noncovalent interaction step was investigated by molecular docking studies, while experimentally the entire library was incubated with M2 and crystallized to confirm covalent binding with the target lysine. The results, rationalized through covalent docking analysis, support our hypothesis of MBHAs as reactive scaffolds for the design of lysine-TCIs.</p>","PeriodicalId":20,"journal":{"name":"ACS Medicinal Chemistry Letters","volume":"16 3","pages":"397–405 397–405"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Medicinal Chemistry Letters","FirstCategoryId":"3","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmedchemlett.4c00479","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

The use of Targeted Covalent Inhibitors (TCIs) is an expanding strategy for the development of innovative drugs. It is driven by two fundamental steps: (1) recognition of the target site by the molecule and (2) establishment of the covalent interaction by its reactive group. The development of new TCIs depends on the development of new warheads. Here, we propose the use of Morita–Baylis–Hillman adducts (MBHAs) to covalently bind Lys strategically placed inside a lipophilic pocket. A human cellular retinoic acid binding protein II mutant (M2) was selected as a test bench for a library of 19 MBHAs. The noncovalent interaction step was investigated by molecular docking studies, while experimentally the entire library was incubated with M2 and crystallized to confirm covalent binding with the target lysine. The results, rationalized through covalent docking analysis, support our hypothesis of MBHAs as reactive scaffolds for the design of lysine-TCIs.

Abstract Image

Morita-Baylis-Hillman加合物化学作为设计赖氨酸靶向共价配体的工具
靶向共价抑制剂(tci)的使用是创新药物开发的一种扩展策略。它由两个基本步骤驱动:(1)分子对目标位点的识别;(2)其活性基团建立共价相互作用。新型tci的发展取决于新型弹头的发展。在这里,我们建议使用Morita-Baylis-Hillman加合物(MBHAs)来共价结合战略性地放置在亲脂口袋中的Lys。选择一个人细胞维甲酸结合蛋白II突变体(M2)作为19个mbha文库的试验台。通过分子对接研究非共价相互作用步骤,而在实验中,整个文库与M2孵育并结晶以确认与目标赖氨酸的共价结合。通过共价对接分析,结果支持了我们的假设,即mbha是设计赖氨酸- tci的活性支架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Medicinal Chemistry Letters
ACS Medicinal Chemistry Letters CHEMISTRY, MEDICINAL-
CiteScore
7.30
自引率
2.40%
发文量
328
审稿时长
1 months
期刊介绍: ACS Medicinal Chemistry Letters is interested in receiving manuscripts that discuss various aspects of medicinal chemistry. The journal will publish studies that pertain to a broad range of subject matter, including compound design and optimization, biological evaluation, drug delivery, imaging agents, and pharmacology of both small and large bioactive molecules. Specific areas include but are not limited to: Identification, synthesis, and optimization of lead biologically active molecules and drugs (small molecules and biologics) Biological characterization of new molecular entities in the context of drug discovery Computational, cheminformatics, and structural studies for the identification or SAR analysis of bioactive molecules, ligands and their targets, etc. Novel and improved methodologies, including radiation biochemistry, with broad application to medicinal chemistry Discovery technologies for biologically active molecules from both synthetic and natural (plant and other) sources Pharmacokinetic/pharmacodynamic studies that address mechanisms underlying drug disposition and response Pharmacogenetic and pharmacogenomic studies used to enhance drug design and the translation of medicinal chemistry into the clinic Mechanistic drug metabolism and regulation of metabolic enzyme gene expression Chemistry patents relevant to the medicinal chemistry field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信