Highly Symmetrical Palladium Cluster Complexes with Either Anticuboctahedral or Cuboctahedral Pd13 Core: Theoretical Insight into Factors Determining Symmetrical Structure

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Yu Tian, Bo Zhu, Tetsuro Murahashi* and Shigeyoshi Sakaki*, 
{"title":"Highly Symmetrical Palladium Cluster Complexes with Either Anticuboctahedral or Cuboctahedral Pd13 Core: Theoretical Insight into Factors Determining Symmetrical Structure","authors":"Yu Tian,&nbsp;Bo Zhu,&nbsp;Tetsuro Murahashi* and Shigeyoshi Sakaki*,&nbsp;","doi":"10.1021/acs.jpca.4c0740110.1021/acs.jpca.4c07401","DOIUrl":null,"url":null,"abstract":"<p >One of the important open questions is what factor(s) determines the symmetry of the structure of the metal nanocluster complex. [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>(μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>6</sub>]<sup>+</sup> (<b>Anti-μ</b><sub><b>4</b></sub>; C<sub>16</sub>H<sub>16</sub> = [2.2]paracyclophane) has an anticuboctahedral Pd<sub>13</sub> core unlike [Pd<sub>13</sub>(μ<sub>4</sub>-C<sub>7</sub>H<sub>7</sub>)<sub>6</sub>]<sup>2+</sup> with cuboctahedral Pd<sub>13</sub> core. DFT calculations show that <b>Anti-μ</b><sub><b>4</b></sub> is more stable than isomers, [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>(μ<sub>3</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>3</sub>(μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>3</sub>]<sup>+</sup> and [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>(μ<sub>2</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>3</sub>(μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>3</sub>]<sup>+</sup> with cuboctahedral Pd<sub>13</sub> core (<b>Cubo-μ</b><sub><b>3</b></sub><b>,μ</b><sub><b>4</b></sub> and <b>Cubo-μ</b><sub><b>2</b></sub><b>,μ</b><sub><b>4</b></sub>, respectively) and [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>(μ<sub>3</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>6</sub>]<sup>+</sup> with distorted icosahedral Pd<sub>13</sub> core (<b>dis-Ih-μ</b><sub><b>3</b></sub>). Not the stabilities of [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>]<sup>+</sup> core and (C<sub>16</sub>H<sub>16</sub>)<sub>6</sub> ligand-shell but rather the interaction energy (<i>E</i><sub>int</sub>) between [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>]<sup>+</sup> and (C<sub>16</sub>H<sub>16</sub>)<sub>6</sub> ligand-shell determines stabilities of these complexes. μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub> coordination bond is stronger than μ<sub>2</sub>- and μ<sub>3</sub>-coordination bonds, leading to a larger <i>E</i><sub>int</sub> value in <b>Anti-μ</b><sub><b>4</b></sub> than in isomers bearing μ<sub>2</sub>- or μ<sub>3</sub>-coordination bond. An icosahedral Pd<sub>13</sub> core is not favorable for these Pd<sub>13</sub> complexes because of the absence of a Pd<sub>4</sub> plane. [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>(μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>6</sub>]<sup>+</sup> with cuboctahedral Pd<sub>13</sub> (<b>Cubo-μ</b><sub><b>4</b></sub>) is not stable despite the presence of six Pd<sub>4</sub> planes, because its three Pd<sub>4</sub> planes with μ-Cl ligand cannot form μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub> coordination bond due to steric repulsion of C<sub>16</sub>H<sub>16</sub> with the μ-Cl ligand. In contrast, <b>Anti-μ</b><sub><b>4</b></sub> is stable because it has six Pd<sub>4</sub> planes with no Cl ligand to form strong μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub> coordination bonds without steric repulsion. Also, discussion is presented on the difference in symmetry between [Pd<sub>13</sub>(μ-Cl)<sub>3</sub>(μ<sub>4</sub>-C<sub>16</sub>H<sub>16</sub>)<sub>6</sub>]<sup>+</sup> and [Pd<sub>13</sub>(μ<sub>4</sub>-C<sub>7</sub>H<sub>7</sub>)<sub>6</sub>]<sup>2+</sup>.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 10","pages":"2510–2520 2510–2520"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.4c07401","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

One of the important open questions is what factor(s) determines the symmetry of the structure of the metal nanocluster complex. [Pd13(μ-Cl)34-C16H16)6]+ (Anti-μ4; C16H16 = [2.2]paracyclophane) has an anticuboctahedral Pd13 core unlike [Pd134-C7H7)6]2+ with cuboctahedral Pd13 core. DFT calculations show that Anti-μ4 is more stable than isomers, [Pd13(μ-Cl)33-C16H16)34-C16H16)3]+ and [Pd13(μ-Cl)32-C16H16)34-C16H16)3]+ with cuboctahedral Pd13 core (Cubo-μ34 and Cubo-μ24, respectively) and [Pd13(μ-Cl)33-C16H16)6]+ with distorted icosahedral Pd13 core (dis-Ih-μ3). Not the stabilities of [Pd13(μ-Cl)3]+ core and (C16H16)6 ligand-shell but rather the interaction energy (Eint) between [Pd13(μ-Cl)3]+ and (C16H16)6 ligand-shell determines stabilities of these complexes. μ4-C16H16 coordination bond is stronger than μ2- and μ3-coordination bonds, leading to a larger Eint value in Anti-μ4 than in isomers bearing μ2- or μ3-coordination bond. An icosahedral Pd13 core is not favorable for these Pd13 complexes because of the absence of a Pd4 plane. [Pd13(μ-Cl)34-C16H16)6]+ with cuboctahedral Pd13 (Cubo-μ4) is not stable despite the presence of six Pd4 planes, because its three Pd4 planes with μ-Cl ligand cannot form μ4-C16H16 coordination bond due to steric repulsion of C16H16 with the μ-Cl ligand. In contrast, Anti-μ4 is stable because it has six Pd4 planes with no Cl ligand to form strong μ4-C16H16 coordination bonds without steric repulsion. Also, discussion is presented on the difference in symmetry between [Pd13(μ-Cl)34-C16H16)6]+ and [Pd134-C7H7)6]2+.

Abstract Image

具有反立方面体或立方面体Pd13核的高度对称钯簇配合物:决定对称结构因素的理论见解
一个重要的开放性问题是什么因素决定了金属纳米团簇配合物结构的对称性。[Pd13(μcl) 3(μ4-C16H16) 6) +(反μ4;与[Pd13(μ4-C7H7)6]2+具有立方体Pd13核不同,[Pd13(μ4-C7H7)6 +具有反立方体Pd13核。DFT计算表明,Anti-μ4比[Pd13(μ-Cl)3(μ3-C16H16)3(μ4- c16h16)3]+和[Pd13(μ-Cl)3(μ2-C16H16)3(μ4- c16h16)3]+和[Pd13(μ-Cl)3(μ2-C16H16)3]+和[Pd13(μ-Cl)3(μ3-C16H16)6]+与畸变的二十面体Pd13核(disi - h-μ3)更稳定。决定配合物稳定性的不是[Pd13(μ-Cl)3]+核和(C16H16)6配体-壳的稳定性,而是[Pd13(μ-Cl)3]+和(C16H16)6配体-壳之间的相互作用能(Eint)。μ4-C16H16配位键比μ2-和μ3配位键强,导致Anti-μ4的Eint值大于带有μ2-或μ3配位键的异构体。由于缺少Pd4平面,二十面体的Pd13核不适合这些Pd13配合物。[Pd13(μ-Cl)3(μ4-C16H16)6]+与立方面体Pd13(Cubo-μ4)虽存在6个Pd4平面,但仍不稳定,这是由于其与μ-Cl配体的3个Pd4平面由于C16H16与μ-Cl配体的空间斥力而不能形成μ4-C16H16配位键。相反,Anti-μ4具有6个Pd4平面,没有Cl配体,形成强的μ4-C16H16配位键,没有位阻。讨论了[Pd13(μ-Cl)3(μ4-C16H16)6]+与[Pd13(μ4-C7H7)6]2+的对称性差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信