{"title":"Microbial Metabolic Limitation in Response to Phosphorus Enrichment: Implications for Carbon Sequestration in a Nitrogen-Enriched Desert Steppe","authors":"Zhao Fang, Hailong Yu, Feng Jiao, Juying Huang","doi":"10.1002/ldr.5505","DOIUrl":null,"url":null,"abstract":"The availability of nitrogen (N) and phosphorus (P) significantly influences microbial metabolism, thereby affecting soil carbon (C) sequestration. However, it remains unclear how microbial resource limitation and C turnover dynamics respond to P availability under elevated N loads in dryland ecosystems. To address this, we conducted a 7-year experiment in a desert steppe in northern China, applying a gradient of P additions (0–16 g P m<sup>−2</sup> year<sup>−1</sup>) under conditions of N loading (atmospheric N deposition +5 g N m<sup>−2</sup> year<sup>−1</sup>). Our aim was to investigate microbial nutrient limitations and their impact on microbial carbon use efficiency (CUE) based on stoichiometry theory. Our findings revealed that, under N loading, microbial metabolism in both the surface (0–10 cm) and subsurface (10–20 cm) layers of the topsoil was limited by both C and P. Interestingly, with increasing P addition, microbial C limitation initially increased and then decreased at the surface but remained unchanged in the subsurface. Under conditions of C limitation, P enrichment did not alleviate microbial P limitation in either soil layer. Surprisingly, the microbial communities in both the surface and subsurface layers maintained plastic stoichiometric homeostasis despite aggravated C:P and N:P imbalances. Furthermore, P enrichment decreased microbial CUE in both soil layers, with the surface experiencing the most significant decline. Further analysis showed that the factors driving microbial nutrient limitation and CUE varied between soil layers under P enrichment, with enhanced microbial C limitation strongly inhibiting CUE. Our study indicates that increased C limitation due to P enrichment can reduce CUE and exacerbate stoichiometric imbalances. This could potentially lead to greater C loss in N-enriched dryland soils.","PeriodicalId":203,"journal":{"name":"Land Degradation & Development","volume":"22 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Land Degradation & Development","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/ldr.5505","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The availability of nitrogen (N) and phosphorus (P) significantly influences microbial metabolism, thereby affecting soil carbon (C) sequestration. However, it remains unclear how microbial resource limitation and C turnover dynamics respond to P availability under elevated N loads in dryland ecosystems. To address this, we conducted a 7-year experiment in a desert steppe in northern China, applying a gradient of P additions (0–16 g P m−2 year−1) under conditions of N loading (atmospheric N deposition +5 g N m−2 year−1). Our aim was to investigate microbial nutrient limitations and their impact on microbial carbon use efficiency (CUE) based on stoichiometry theory. Our findings revealed that, under N loading, microbial metabolism in both the surface (0–10 cm) and subsurface (10–20 cm) layers of the topsoil was limited by both C and P. Interestingly, with increasing P addition, microbial C limitation initially increased and then decreased at the surface but remained unchanged in the subsurface. Under conditions of C limitation, P enrichment did not alleviate microbial P limitation in either soil layer. Surprisingly, the microbial communities in both the surface and subsurface layers maintained plastic stoichiometric homeostasis despite aggravated C:P and N:P imbalances. Furthermore, P enrichment decreased microbial CUE in both soil layers, with the surface experiencing the most significant decline. Further analysis showed that the factors driving microbial nutrient limitation and CUE varied between soil layers under P enrichment, with enhanced microbial C limitation strongly inhibiting CUE. Our study indicates that increased C limitation due to P enrichment can reduce CUE and exacerbate stoichiometric imbalances. This could potentially lead to greater C loss in N-enriched dryland soils.
期刊介绍:
Land Degradation & Development is an international journal which seeks to promote rational study of the recognition, monitoring, control and rehabilitation of degradation in terrestrial environments. The journal focuses on:
- what land degradation is;
- what causes land degradation;
- the impacts of land degradation
- the scale of land degradation;
- the history, current status or future trends of land degradation;
- avoidance, mitigation and control of land degradation;
- remedial actions to rehabilitate or restore degraded land;
- sustainable land management.