Regional synthesis and mapping of soil organic carbon and nitrogen stocks at the Canadian Beaufort coast

IF 5.8 2区 农林科学 Q1 SOIL SCIENCE
Soil Pub Date : 2025-03-12 DOI:10.5194/egusphere-2025-1052
Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, Gustaf Hugelius
{"title":"Regional synthesis and mapping of soil organic carbon and nitrogen stocks at the Canadian Beaufort coast","authors":"Julia Wagner, Juliane Wolter, Justine Ramage, Victoria Martin, Andreas Richter, Niek Jesse Speetjens, Jorien E. Vonk, Rachele Lodi, Annett Bartsch, Michael Fritz, Hugues Lantuit, Gustaf Hugelius","doi":"10.5194/egusphere-2025-1052","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> Permafrost soils are particularly vulnerable to climate change. To assess and improve estimations of carbon (C) and nitrogen (N) budgets it is necessary to accurately map soil carbon and nitrogen in the permafrost region. In particular, soil organic carbon (SOC) stocks have been predicted and mapped by many studies from local to pan-Arctic scales. Several studies have been carried out at the Canadian Beaufort Sea coast, though no regional synthesis of terrestrial carbon stocks based on spatial modelling has been conducted yet. This study synthesises available field data from the Canadian coastal plain and uses it to map regional SOC and N stocks using the machine learning algorithm random forest and environmental variables based on remote sensing data. We explore local differences in soil properties and how soil data distribution across the region affects the accuracy of the predictions of SOC and N stocks. We mapped SOC and N stocks for the entire region and provide separate models for the coastal mainland area and Qikiqtaruk Herschel Island. We assessed performance of different random forest models by using the Area of Applicability (AOA) method. We further applied the quantile regression forest method to the mainland and Qikiqtaruk Herschel Island models for SOC stocks and compared the results with the AOA method. Our results indicate that not only the selection of data is crucial for the resulting maps, but also the chosen covariates, which were picked by the models as most important. The estimated SOC stock for the upper metre is 56.7 ± 5.6 kg m<sup>−2 </sup>and the N stock 2.19 ± 0.51 kg m<sup>−2</sup>. The average SOC stocks vary significantly when including or excluding data in the predictive models. Qikiqtaruk Herschel Island is geologically different from the coastal mainland and has lower SOC stocks. Including Qikiqtaruk Herschel Island soil data to predict SOC stocks at the mainland has large impact on the results. Differences in N stocks were not as dependent on the location as SOC stocks and rather differences between individual studies occurred. The results of the separate models show 36.2 ± 5.7 kg C m<sup>−2 </sup>and 2.66 ± 0.39 kg N m<sup>−2 </sup>for Qikiqtaruk Herschel Island and 57.2 ± 4.5 kg C m<sup>−2 </sup>and 2.17 ± 0.50 kg N m<sup>−2 </sup>for the mainland. Our results diverge from previous studies of lower resolution, showing the added regional-scale accuracy and precision that can be achieved at intermediate resolution and with sufficient field data.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"10 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.5194/egusphere-2025-1052","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. Permafrost soils are particularly vulnerable to climate change. To assess and improve estimations of carbon (C) and nitrogen (N) budgets it is necessary to accurately map soil carbon and nitrogen in the permafrost region. In particular, soil organic carbon (SOC) stocks have been predicted and mapped by many studies from local to pan-Arctic scales. Several studies have been carried out at the Canadian Beaufort Sea coast, though no regional synthesis of terrestrial carbon stocks based on spatial modelling has been conducted yet. This study synthesises available field data from the Canadian coastal plain and uses it to map regional SOC and N stocks using the machine learning algorithm random forest and environmental variables based on remote sensing data. We explore local differences in soil properties and how soil data distribution across the region affects the accuracy of the predictions of SOC and N stocks. We mapped SOC and N stocks for the entire region and provide separate models for the coastal mainland area and Qikiqtaruk Herschel Island. We assessed performance of different random forest models by using the Area of Applicability (AOA) method. We further applied the quantile regression forest method to the mainland and Qikiqtaruk Herschel Island models for SOC stocks and compared the results with the AOA method. Our results indicate that not only the selection of data is crucial for the resulting maps, but also the chosen covariates, which were picked by the models as most important. The estimated SOC stock for the upper metre is 56.7 ± 5.6 kg m−2 and the N stock 2.19 ± 0.51 kg m−2. The average SOC stocks vary significantly when including or excluding data in the predictive models. Qikiqtaruk Herschel Island is geologically different from the coastal mainland and has lower SOC stocks. Including Qikiqtaruk Herschel Island soil data to predict SOC stocks at the mainland has large impact on the results. Differences in N stocks were not as dependent on the location as SOC stocks and rather differences between individual studies occurred. The results of the separate models show 36.2 ± 5.7 kg C m−2 and 2.66 ± 0.39 kg N m−2 for Qikiqtaruk Herschel Island and 57.2 ± 4.5 kg C m−2 and 2.17 ± 0.50 kg N m−2 for the mainland. Our results diverge from previous studies of lower resolution, showing the added regional-scale accuracy and precision that can be achieved at intermediate resolution and with sufficient field data.
加拿大波弗特海岸土壤有机碳和氮储量的区域综合与绘图
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Soil
Soil Agricultural and Biological Sciences-Soil Science
CiteScore
10.80
自引率
2.90%
发文量
44
审稿时长
30 weeks
期刊介绍: SOIL is an international scientific journal dedicated to the publication and discussion of high-quality research in the field of soil system sciences. SOIL is at the interface between the atmosphere, lithosphere, hydrosphere, and biosphere. SOIL publishes scientific research that contributes to understanding the soil system and its interaction with humans and the entire Earth system. The scope of the journal includes all topics that fall within the study of soil science as a discipline, with an emphasis on studies that integrate soil science with other sciences (hydrology, agronomy, socio-economics, health sciences, atmospheric sciences, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信