The Telomere-to-telomere genome of Pucai (蒲菜) (Typha angustifolia L.), a distinctive semi-aquatic vegetable with lignin and chlorophyll as quality characteristics

IF 8.7 1区 农林科学 Q1 Agricultural and Biological Sciences
Ya-Peng Li, Li-Yao Su, Ting Huang, Hui Liu, Shan-Shan Tan, Yuan-Jie Deng, Ya-Hui Wang, Ai-Sheng Xiong
{"title":"The Telomere-to-telomere genome of Pucai (蒲菜) (Typha angustifolia L.), a distinctive semi-aquatic vegetable with lignin and chlorophyll as quality characteristics","authors":"Ya-Peng Li, Li-Yao Su, Ting Huang, Hui Liu, Shan-Shan Tan, Yuan-Jie Deng, Ya-Hui Wang, Ai-Sheng Xiong","doi":"10.1093/hr/uhaf079","DOIUrl":null,"url":null,"abstract":"Pucai (蒲菜) (Typha angustifolia L.) within the Typha spp. is a distinctive semi-aquatic vegetable. Lignin and chlorophyll are two crucial traits and quality indicators for Pucai. In this study, we assembled a 207.00 Mb high-quality gapless genome of Pucai, telomere-to-telomere (T2T) level with a contig N50 length of 13.73 Mb. The most abundant type of repetitive sequence, comprising 16.98% of the genome, is the LTR-RT. A total of 30 telomeres and 15 centromeric regions were predicted. Gene families related to lignin, chlorophyll biosynthesis, and disease resistance were greatly expanded, which played important roles in the adaptation of Pucai to wetlands. The slow evolution of Pucai was indicated by the σ WGD-associated Ks peaks from different Poales and the low activity of recent LTR-RT in Pucai. Meanwhile, we found a unique WGD event in Typhaceae. A statistical analysis and annotation of genomic variations were conducted in inter-species and intra-species of Typha. Based on the T2T genome, we constructed lignin and chlorophyll metabolic pathways of Pucai. Subsequently, the candidate structural genes and transcription factors that regulate lignin and chlorophyll biosynthesis were identified. The T2T genomic resources will provide molecular information for lignin and chlorophyll accumulation and help to understand genome evolution in Pucai.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"68 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf079","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Pucai (蒲菜) (Typha angustifolia L.) within the Typha spp. is a distinctive semi-aquatic vegetable. Lignin and chlorophyll are two crucial traits and quality indicators for Pucai. In this study, we assembled a 207.00 Mb high-quality gapless genome of Pucai, telomere-to-telomere (T2T) level with a contig N50 length of 13.73 Mb. The most abundant type of repetitive sequence, comprising 16.98% of the genome, is the LTR-RT. A total of 30 telomeres and 15 centromeric regions were predicted. Gene families related to lignin, chlorophyll biosynthesis, and disease resistance were greatly expanded, which played important roles in the adaptation of Pucai to wetlands. The slow evolution of Pucai was indicated by the σ WGD-associated Ks peaks from different Poales and the low activity of recent LTR-RT in Pucai. Meanwhile, we found a unique WGD event in Typhaceae. A statistical analysis and annotation of genomic variations were conducted in inter-species and intra-species of Typha. Based on the T2T genome, we constructed lignin and chlorophyll metabolic pathways of Pucai. Subsequently, the candidate structural genes and transcription factors that regulate lignin and chlorophyll biosynthesis were identified. The T2T genomic resources will provide molecular information for lignin and chlorophyll accumulation and help to understand genome evolution in Pucai.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Horticulture Research
Horticulture Research Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
11.20
自引率
6.90%
发文量
367
审稿时长
20 weeks
期刊介绍: Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信